

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2009 2. REPORT TYPE

3. DATES COVERED
 00-07-2009 to 00-08-2009

4. TITLE AND SUBTITLE
Crosstalk, The Journal of Defense Software Engineering. Volume 22,
Number 5

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CrossTalk / 517 SMXS/MXDEA,6022 Fir AVE,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

36

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk The Journal of Defense Software Engineering July/August 2009

4

7

14

22

29

32

3
18
20
28
34
35

DepartmentsDepartments

From the Sponsor

Coming Events

SSTC 21st Conference Wrap-Up

CrossTalk Backer’s Ad

SMXG Ad

BackTalk

Lean Enablers for Systems Engineering
Learn about a new product that will help systems engineering practitioners
ensure process replication as well as process and product quality.
by Dr. Bohdan W. Oppenheim

A Framework for Systems Engineering Development of
Complex Systems
This article analyzes the incremental commitment model, a
repeatable, inherent, risk-driven commitment process that can stabilize
and synchronize systems engineering and acquisition processes.
by Dr. Karl L. Brunson, Dr. Jeffrey Beach, Dr. Thomas A. Mazzuchi,
and Dr. Shahram Sarkani

Why Software Requirements Traceability Remains a
Challenge
The benefits and challenges of requirements traceability—the practice of
documenting the life of a requirement—are examined in this article.
by Andrew Kannenberg and Dr. Hossein Saiedian

Software Project and Process Measurement
The author discusses software measurement, outlining a four-step,
objective-driven measurement process and providing practical guidance
for project and process measurement.
by Dr. Christof Ebert

A Perspective on Emerging Industry SOA Best Practices
To meet the challenges in employing service orientation on a large scale,
this article outlines eight strategies that will enable effective SOA
implementation.
by Larry Pizette, Salim Semy, Geoffrey Raines, and Steve Foote

Resistance as a Learning Opportunity
Instead of looking at resistance to software and systems engineering
process improvements as a bad thing, this article looks at its benefits.
by David P. Quinn

ProcessProcess ReplicationReplication

SoftwareSoftware EngineeringEngineering TechnologyTechnology

OpenOpen ForumForum

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR
PUBLISHER

MANAGING EDITOR
ASSOCIATE EDITOR

PUBLISHING COORDINATOR
PHONE
E-MAIL

CrossTalk ONLINE

Kristin Baldwin

Joan Johnson

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk, The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S. Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal. CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address. You may e-mail us or use the form on p. 33.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions: We welcome articles of interest
to the defense software community. Articles must be
approved by the CrossTalk editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CrossTalk does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CrossTalk.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CrossTalk

are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC. All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.
af.mil/crosstalk>, call (801) 777-0857 or e-mail
<stsc.web master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ONTHE COVER

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 2

July/August 2009 www.stsc.hill.af.mil 3

From the Sponsor

You may be asking, “What exactly is process replication?” It is the
ability to take an effective, well-defined process framework from

one environment and apply it to another that provides similar prod-
ucts and services. Process replication enables engineers and their
teams to hit the ground running.

Processes are what we develop, document, and then use to train
people to do good work in a repeatable way. From this, we expect those we’ve trained

to be enabled to produce high quality products on cost and on schedule. To maximize success,
these processes are based upon best practices found in capability maturity models. The process-
es are the “how” and the models are the “what.” An important thing to remember is that they
are complementary.

At NAVAIR, the Team Software Process (TSP) has been an extremely effective way of car-
rying out process replication. It is a complete, ready-to-go process with training for multiple lev-
els of a project and its organization, process scripts for project planning and operations, planned
coaching to help teams maintain direction, and a choice of tools that automate its use. All of
this creates a team environment that both supports disciplined individual work and builds and
maintains a self-directed team. The TSP has continually proven its ability to replicate self-direct-
ed teams that address critical business areas, including cost and schedule management, effective
quality management, and cycle-time reduction.

Furthermore, the fundamental principles of this team process can be replicated with many
other engineering and technical teams to plan and operate their work of delivering products and
providing services: for instance, in requirements elicitation and definition, design, implementa-
tion, test, maintenance—and even in process improvement itself.

The team process builds on and enables the replication of personal process. These person-
al processes show individuals how to measure their work and use that data to improve their per-
formance. This, in turn, guides individual feedback to the team process, accelerating teamwork
and creating an environment where individuals come together as a self-directed team that can
use data to both know where they stand and more effectively plan for the future.

Experiences in organizations both within NAVAIR and beyond have shown that success in
organizations pursuing model-based process improvement were accelerated when done in con-
junction with their projects using these replicated processes.

Four articles in this issue address various experiences in the area of processes ready for repli-
cation. In Lean Enablers for Systems Engineering (SE), Dr. Bohdan W. Oppenheim presents a col-
lection of “dos” and “don’ts” of SE with ready-to-go wisdom on how to prepare for, plan, exe-
cute, and practice SE and related enterprise management using Lean thinking. In A Framework
for Systems Engineering Development of Complex Systems, Dr. Karl L. Brunson, Dr. Jeffrey Beach, Dr.
Thomas A. Mazzuchi, and Dr. Shahram Sarkani present an SE process—called the Incremental
Commitment Model—where schedule tasks are evaluated against technical and manufacturing
risk drivers. In Why Software Requirements Traceability Remains a Challenge, Andrew Kannenberg and
Dr. Hossein Saiedian provide a brief introduction to software requirements traceability and
investigate why many challenges exist in traceability practices today. Dr. Christof Ebert’s article,
Software Project and Process Measurement, briefly introduces us to software measurement and pro-
vides practical guidance for project and process measurement.

Two supporting articles will also help organizations with process improvement and SE:
Larry Pizette, Salim Semy, Geoffrey Raines, and Steve Foote’s A Perspective on Emerging Industry
SOA Best Practices will help organizations improve business processes while David P. Quinn sees
Resistance as a Learning Opportunity for process improvement in software and systems engineering.

I invite you to consider these experiences and approaches as additional ways to make process
improvement happen for you and in your organization. Best practice models and process repli-
cation together do make our engineering products better, faster, and cheaper.

Process Replication and Model-Based Process Improvement

Jeff Schwalb
Naval Air Systems Command Co-Sponsor

CrossTalk would
like to thank NAVAIR

for sponsoring
this issue.

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 3

4 CrossTalk The Journal of Defense Software Engineering July/August 2009

Systems engineering is regarded as an
established sound practice but not

always delivered effectively. Sixty-two
recent successful space launches indicate
that mission assurance can be practiced
well. At the same time, recent U.S. Gov-
ernment Accountability Office (GAO)
and NASA studies of space systems [1, 2,
3, 4] document notorious major budget
and schedule overruns, some exceeding
100 percent. Most programs are burdened
with waste, poor coordination, unstable
requirements, quality problems, and man-
agement frustrations. Recent studies by
the MIT-based Lean Advancement
Initiative (LAI) researchers [5, 6, 7, 8] have
identified a mind-boggling amount of
waste in government programs, reaching
70 percent of charged time. This waste
represents a vast productivity reserve in
programs and major opportunities to
improve program efficiency.

The new field of LSE is the application
of Lean Thinking to SE and to the related
aspects of enterprise management. SE is
focused on the flawless performance of
complex technical systems. Lean Thinking
is the holistic management paradigm credit-
ed for the extraordinary rise of Toyota to
the most profitable and the largest auto
company in the world [9]. Toyota is well-
known for practicing excellent Product
Development and SE (what Toyota refers to
as simultaneous engineering). For example,
the Prius car design was completed in nine
months from the end of styling, a perfor-
mance level unmatched by any competitor
[10]. Lean Thinking has been successfully
applied in defense industry and in the U.S.
military itself, (e.g., [5], and the Air Force
Lean initiative named AFSO-21). It has
become an established paradigm in manu-
facturing, aircraft depots, administration,
supply chain management, health, and Pro-
duct Development, including engineering.

LSE is the area of synergy of Lean
and SE with the goal to deliver the best
life-cycle value for technically complex
systems with minimal waste. LSE does not
mean less SE. It means more and better SE
with higher responsibility, authority, and
accountability (RAA), leading to better
and waste-free workflow and mission
assurance. Under the LSE philosophy,
mission assurance is non-negotiable, and
any task which is legitimately required for
success must be included, but it should be
well-planned and executed with minimal
waste.

Fundamentals of Lean
Thinking
Three concepts are fundamental to the
understanding of Lean Thinking: value,
waste, and the process of creating value
without waste (also known as Lean
Principles).

Value
The value proposition in engineering pro-
grams is often a multi-year complex and
expensive acquisition process, involving
thousands of stakeholders and resulting in
hundreds or even thousands of require-
ments, which, notoriously, are rarely stable
(even at the Request for Proposal phase).
In Lean SE, Value is defined simply as
mission assurance (the delivery of a flaw-
less complex system, with flawless techni-
cal performance during the product or
mission life cycle), satisfying the customer
and all other stakeholders, which implies
completion with minimal waste, minimal
cost, and the shortest possible schedule.

Waste in Product Development
LAI classifies waste into seven categories:
1) Overproduction; 2) Transportation; 3)
Waiting; 4) Over-processing; 5) Inventory;
6) Unnecessary movement; and 7)

Defects. These wastes, in the SE context,
are elaborated on in [11].

Lean Principles
Womack [9] captured the process of cre-
ating value without waste into six Lean
Principles2. The Principles are abbreviated
as Value, Value Stream, Flow, Pull, Per-
fection, and People, defined as follows:
1. The customer (either external or

internal) defines value. The value
proposition must be captured with
crystal clarity early in the program.

2. Map the value stream. Prepare for
and plan all end-to-end linked actions
and processes necessary to realize
value, streamlined, after eliminating
waste.

3. Make value flow continuously. This
should happen without stopping,
rework, or backflow (legitimate opti-
mized iterations are okay).

4. Let (internal or external) customers
pull value. The customer’s pull/need
defines all tasks and their timing.

5. Pursue perfection. Constantly im-
prove, and make all imperfections visi-
ble to all, which is motivating to the
continuous process of improvement.

6. Respect for people. Create a system
of mutually respectful, trusting, hon-
est, cooperating, and synergistic rela-
tionships of key stakeholders, motivat-
ing staff to exhibit top capabilities.

Lean Enablers for SE
LEfSE is a major product recently
released in the field of Lean SE. It is a
comprehensive checklist of 194 practices
and recommendations formulated as the
dos and don’ts of SE, containing tacit
knowledge (collective wisdom) on how to
prepare for, plan, execute, and practice SE
and related enterprise management using
Lean Thinking. Each enabler enhances the

Lean Enablers for Systems Engineering
Dr. Bohdan W. Oppenheim

Loyola Marymount University

A new product named Lean Enablers for Systems Engineering (LEfSE) is described. It is a collection of 194 practices and

recommendations formulated as “dos” and “don’ts” of SE, and containing collective wisdom on how to prepare for, plan,

execute, and practice SE and related enterprise management using Lean Thinking. The enablers are focused on mission assur-

ance and the satisfaction of stakeholders achieved with minimum waste. The product has been developed by experts from the

Lean Systems Engineering (LSE)1 Working Group (WG) of the International Council on Systems Engineering

(INCOSE). LEfSE are organized into six well-known Lean Principles called Value, Value Stream, Flow, Pull,

Perfection, and Respect for People. The LEfSE are not intended to become a mandatory practice. Instead, they should be

used as a checklist of good practices.

Process Replication

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 4

Lean Enablers for Systems Engineering

July/August 2009 www.stsc.hill.af.mil 5

program value and reduces some waste.
As a set, the enablers are focused on pro-
viding more affordable solutions to
increasingly complex challenges and
improving response time from the identi-
fication of need to the release of the sys-
tem. The enablers deal with mission assur-
ance and promote practices that optimize
workflow and reduce waste.

The enablers are formulated as a Web-
based addendum to the traditional SE
manuals—such as “The International
Council on Systems Engineering
[INCOSE] Handbook,” ISO 15288, and
similar NASA, DoD, or company manu-
als—and do not repeat the practices made
therein, which are regarded as sound.

The LEfSE practices are organized
into the previously mentioned six Lean
Principles. The practices cover a large
spectrum of SE and other relevant enter-
prise management practices, with a gener-
al focus to improve program value and
stakeholder satisfaction, and reduce waste,
delays, cost overruns, and frustrations3.
The full text of the LEfSE is too long for
the present article, therefore only a brief
summary is given herein. The full text is
available online4.
• Under the Value Principle, the

enablers promote a robust process of
establishing the value of the end-prod-
uct or system to the customer with
crystal clarity. The process should be
customer-focused, involving the cus-
tomer frequently and aligning the
enterprise employees accordingly.

• The enablers under the Value Stream
Principle emphasize waste-preventing
measures, solid preparation of the per-
sonnel and processes for subsequent
efficient workflow and healthy rela-
tionships between stakeholders (cus-
tomer, contractor, suppliers, and
employees); detailed program plan-
ning; frontloading; and use of leading
indicators and quality metrics.

• The Flow Principle lists the enablers
which promote the uninterrupted flow
of robust quality work and first-time
right; steady competence instead of
hero behavior in crises; excellent com-
munication and coordination; concur-
rency; frequent clarification of the
requirements; and making program
progress visible to all.

• The enablers listed under the Pull
Principle are a powerful guard against
the waste of rework and overproduc-
tion. They promote pulling tasks and
outputs based on need (and rejecting
others as waste) and better coordina-
tion between the pairs of employees
handling any transaction before their

work begins (so that the result can be
first-time right).

• The Perfection Principle promotes
excellence in the SE and enterprise
processes; the use of the wealth of
lessons learned from previous pro-
grams in the current program; the
development of perfect collaboration
policy across people and processes;
and driving out waste through stan-
dardization and continuous improve-
ment. A category of these enablers
calls for a more important role of sys-
tems engineers, with RAA for the over-
all technical success of the program.

• Finally, the Respect-for-People Prin-
ciple contains enablers that promote
the enterprise culture of trust, open-
ness, respect, empowerment, coopera-

tion, teamwork, synergy, good com-
munication and coordination; and
enable people for excellence.
LEfSE were developed by 14 experi-

enced practitioners organized into two
teams, some recognized leaders in Lean
and System Engineering from industry,
academia and governments (from the U.S.,
United Kingdom, and Israel), with coop-
eration from the 100-member strong
international LSE WG of INCOSE [11].

Both SE and Lean represent challeng-
ing areas for research as they are ground-
ed in industrial and government practice
rather than laboratory work or theory. It is
well-known that hard data about SE in
large programs is difficult to obtain
because:
• The programs are classified and pro-

prietary.
• The companies are not willing to

release such data even when it exists.
• In many cases, the data is non-existent,

of a poor quality, lacks normalization,

suffers from discontinuities over long
program schedules, and is convoluted
with other enterprise activities.
As a result, it is difficult to collect the

data needed to perform hypothesis testing.
Therefore, rather than to rely on explicit
program data, the enablers were devel-
oped from collective tacit knowledge, wis-
dom, and experience of the LSE WG
members. Such an approach has been
practiced for ages by numerous institu-
tions, and is being described in [12].
LEfSE have been formulated for industry
SE practitioners, but the development
benefited from academic depth, breadth,
and rigor; the latter emphasis provided by
surveys and benchmarking to published
data, as follows.

The development of LEfSE included
five phases: Conceptual, Alpha, Beta,
Prototype, and Version 1.0. It was evalu-
ated by separate surveys in the Beta and
Prototype phases and by comparisons
with the recent programmatic recommen-
dations by GAO and NASA [1, 2, 3, 4].
The surveys indicated that LEfSE are
regarded as important for program suc-
cess but are not widely used by industry.
The comparisons indicated that LEfSE
are consistent with the NASA and GAO
recommendations, but are significantly
more detailed and comprehensive.

Intended Use
The LEfSE are not intended to become a
mandatory tool. Instead, they should be
used as a checklist of good holistic prac-
tices. Some are intended for top enterprise
managers, some for programs, and others
for line employees. Some are more action-
able than others, and some are easier to
implement than others. Some enablers
may require changes in company policies
and culture. However, employee aware-
ness of even those least actionable and
most difficult to implement enablers
should improve the thinking at work.

The creators believe that as many sys-
tems (and other) engineers, enterprise
managers, and customer representatives as
possible should be trained in the LEfSE,
as it will lead to better programs. At this
time, a large effort of offering tutorials
and lectures about the LEfSE throughout
INCOSE chapters, industry, and academia
is ongoing.

The published product includes exam-
ples of the programs and companies that
practice the given enablers. Also listed is
the average value measuring the use of a
given enabler in industry, obtained from
the surveys.

A formal online process of continuous
improvement and periodic new releases of

“The practices cover a
large spectrum of SE ...
with a general focus
to improve program
value and stakeholder

satisfaction, and
reduce waste, delays,

cost overruns,
and frustrations.”

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 5

Process Replication

6 CrossTalk The Journal of Defense Software Engineering July/August 2009

the LEfSE has been set up as new knowl-
edge and experience becomes available. A
comprehensive description of the history
of LSE, the development process of
LEfSE, the full text of the enablers, the
surveys, and industrial examples can be
found in [11]. �

References
1. GAO. “Defense Acquisitions – Ass-

essments of Selected Weapon Pro-
grams.” GAO-07-4065SP. Washington,
D.C. Mar. 2008 <www.gao.gov/new.
items/d08467sp.pdf>.

2. GAO. “Best Practices – Increased
Focus on Requirements and Oversight
Needed to Improve DOD’s Acqui-
sition Environment and Weapon Sys-
tem Quality.” GAO-08-294. Washing-
ton, D.C. Feb. 2008 <www.gao.gov/
new.items/d08294.pdf>.

3. GAO. “Space Acquisitions – Major
Space Programs Still at Risk for Cost
and Schedule Increases.” GAO-08-
552T. Washington, D.C. 4 Mar. 2008
<www.gao.gov/new.items/d08552t.
pdf>.

4. “NASA Pilot Benchmarking Initiative:
Exploring Design Excellence Leading
to Improved Safety and Reliability.”
Final Report, Oct. 2007.

5. LAI. “Phase I.” 1 Jan. 2009 <http://

lean.mit.edu/index.php?/about-lai/
history/phase-one.html>.

6. McManus, Hugh L. “Product Devel-
opment Value Stream Mapping Man-
ual.” LAI Release Beta, MIT, Apr.
2004.

7. Slack, Robert A. “Application of Lean
Principles to the Military Aerospace
Product Development Process.”
Master of Science – Engineering and
Management Thesis, MIT, Dec. 1998.

8. Oppenheim, Bohdan W. “Lean Prod-
uct Development Flow.” Journal of
Systems Engineering. Vol. 7, No. 4, 2004.

9. Womack, James P., and Daniel T.
Jones. Lean Thinking. New York:
Simon & Schuster, 1996.

10. Morgan, James M. and Jeffrey K.
Liker. The Toyota Product Develop-
ment System – Integrating People,
Process And Technology. New York:
Productivity Press, 2006.

11. Oppenheim, Bohdan W., Earl M.
Murman, and Deborah Secor. “Lean
Enablers for Systems Engineering.”
Submitted to Journal of Systems
Engineering. Dec. 2008.

12. Webb, Luke. “Knowledge Manage-
ment for Through Life Support.”
Doctoral Thesis (in progress) via pri-
vate communication. RMIT University
(Australia), 2008.

Notes
1. The early use of the term LSE is

sometimes met with concern that this
might be a “re-packaged faster, better,
cheaper” initiative, leading to cuts in
SE at a time when the profession is
struggling to increase the level and
quality of SE effort in programs. Our
work clearly disproves this concern.

2. The original formulation had five prin-
ciples; the sixth (the Respect-for-
People Principle) was added at a later
time.

3. LEfSE practices do not deal, however,
with explicit financial steps such as
cost estimating or earned value analy-
sis, which are regarded as a separate
activity.

4. A PowerPoint presentation is available
in PDF format at: <http://cse.lmu.
edu/Assets/Colleges+Schools/CSE/
Lean+Enablers+for+SE+Version+1.
01.pdf>.

About the Author

Bohdan W. Oppen-

heim, Ph.D., is a profes-
sor of mechanical and
systems engineering at
Loyola Marymount Uni-
versity. He is the founder

and co-chair of the LSE WG of
INCOSE and serves as the local coordi-
nator of the Lean Aerospace Initiative
Educational Network. Oppenheim has
worked for Northrop, the Aerospace
Corporation, and Global Marine, and
has served as a Lean consultant for
Boeing and 50 other firms. He has a doc-
torate in dynamics from the University
of Southampton (U.K.), a naval archi-
tect’s degree from MIT, a master’s degree
in ocean systems from the Stevens
Institute of Technology, and a bachelor’s
degree in mechanical engineering and
aeronautics from Warsaw Technical
University. Oppenheim is a member of
INCOSE and is a fellow of the
Institution for the Advancement of
Engineering.

Loyola Marymount University
Pereira Hall of Engineering
RM 204
Los Angeles, CA 90045
Phone: (310) 338-2825
Fax: (310) 338-6028
E-mail: boppenheim@lmu.edu

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 6

July/August 2009 www.stsc.hill.af.mil 7

The level of complexity needed to
develop spacecraft systems and other

emerging technologies require programs
to develop risk management and risk plan-
ning techniques that can potentially identi-
fy schedule and cost risks as early as pos-
sible during the acquisition life cycle.
According to the Government
Accountability Office (GAO), studies
have shown that there has been an
increase in schedule and cost overruns
that involve complex systems and emerg-
ing technologies. This is often the case
when projects exceed scheduled activity
durations, resulting in frequent budget
overruns. There are a plethora of risks
that factor into inaccurate schedule esti-
mates, including the elusive emerging
requirements to the lack of process under-
standing.

Unfortunately, it is common to
observe how requirements established
during the earlier stages of an acquisition
life cycle are changed to accommodate
customer requests, thus impacting sched-
ule and delivery costs. These impacts
invariably affect scheduled activities from
the design through the development and
production of the complex system. To
improve implementation and the under-
standing of the life-cycle processes for the
complex system, it is essential that the
development of a work breakdown struc-
ture (WBS), or an architecture and its
interfaces within the appropriate hierar-
chical levels of decomposition, be accu-
rately structured.

The structure of this architecture
coincides with the development and
implementation of activities that are
required for the design, development, and
production stages of the life cycle. As a
result, the developed schedule activities
influence the cost of delivery. Since sched-
uled activities impact the cost to develop
complex systems, it can be shown that
there is an inherent relationship between
the complex systems architecture and the
process activities required for schedule

and cost estimating. As a result, project
schedule and cost estimation play an
important role in driving key acquisition
life-cycle decisions.

Developing and delivering complex
systems requires the management of com-
plex risks such as uncertainty usage,
schedule uncertainties, uncertainties asso-
ciated with technology maturity, manufac-
turing maturity, technical design, and tech-
nical complexity [1]. Acquisition life-cycle
decisions can be potentially flawed if the

systems engineering development model
isn’t appropriately matched to the com-
plex system being developed. To address
the challenge of selecting a candidate sys-
tems engineering development model, the
Committee on Human-System Design
Support for Changing Technology recom-
mended implementation of the ICM as a
reasonably robust framework for the
“progressive reduction of risk through the
full life cycle of system development, to
produce a cost-effective system that meets
the needs of all the stakeholders” [1]. The
ICM integrates key strengths or attributes
of other models into an integrated frame-
work while introducing risk decision
anchor points throughout the life cycle [2].
To complement implementation of this
model, our research provides a hypotheti-
cal example that incorporates maturity risk
drivers—technology readiness levels
(TRL) and manufacturing readiness levels
(MRL)—within a notional ICM frame-
work as an approach to assess schedule
and cost risks during the development of

a complex system.
The method chosen to evaluate sched-

ule and cost risk drivers for this research is
known as Monte Carlo simulation. This
method is used to model probabilistic
behaviors of activities throughout the
acquisition life cycle. The term Monte Carlo
has been used interchangeably with prob-
abilistic simulation since it is a technique
used to randomly select numbers from a
probability distribution or sampling. For
our work, Monte Carlo simulation mod-
eled the behaviors of schedule and cost
uncertainties while providing traceability
and consequence between the risk drivers
and activities within the acquisition life
cycle. Specifically, the simulation modeled
the behaviors of tasks and activities
derived from the spacecraft systems (the
WBS) after mapping various risk drivers to
those tasks [3]. This allows for exploration
of the likelihood and consequences that
these risk drivers have scheduled task
activities throughout the acquisition life
cycle.

The ICM Framework
The ICM was developed to ensure the
flexibility of implementing one or more
frameworks throughout each stage of an
acquisition life cycle. The model was
built upon five key principles that are crit-
ical for system development: 1) customer
satisfaction; 2) incremental growth of
system definition and stakeholder com-
mitment; 3) iterative system definition
and development; 4) concurrent system
definition and development; and 5) man-
agement and project risk [2]. These prin-
ciples are also proven strengths of other
models such as the Waterfall, iterative,
Rational Unified Process (RUP), and spi-
ral development frameworks.

The ICM is unique in that it merges
these key principles into one framework [2]
to provide a process model that is robust
with a central focus to progressively reduce
potential risks throughout the entire life
cycle, culminating in the development of

A Framework for Systems Engineering
Development of Complex Systems

In developing complex systems, evaluating potential schedule and cost risks is essential. With the Incremental Commitment

Model (ICM), schedule tasks can be evaluated against manufacturing and technology risk drivers. In this article, these risk

drivers are analyzed using a comprehensive approach with emphasis being placed on quantitative risk analysis through Monte

Carlo simulation. Through modeling the behavior of a hypothetical project schedule for a notional spacecraft system, the

authors show how the ICM framework is implemented in complex system development. The result is a repeatable, inherent,

risk-driven commitment process that can stabilize and synchronize systems engineering and acquisition processes.

Dr. Karl L. Brunson, Dr. Jeffrey Beach, Dr. Thomas A. Mazzuchi, and Dr. Shahram Sarkani
George Washington University

“There are a plethora
of risks that factor into

accurate schedule
estimates ...”

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 7

Process Replication

8 CrossTalk The Journal of Defense Software Engineering July/August 2009

complex systems that are both schedule-
and cost-effective. The ICM framework
also provides the decision-maker with the
flexibility to recognize potential risks that
coincide with system’s maturity and com-
plexity of scope. To accommodate the
ensuing consequences of potential risk dri-
vers, the ICM framework implements a risk
management principle that associates risk-
driven tasks and activities for each stage of
the acquisition life cycle.

The construct of the ICM framework
is comprised of two major stages. Stage I,
the Incremental Definition, entails the ini-
tial design stages of the system where the
conceptual definition and feasibility stud-
ies are conducted for a better understand-
ing of the system and stakeholder com-
mitment. Stage II, Incremental Develop-
ment and Operations, is where the incre-
ments of operational capability are devel-
oped and integrated into schedules that
correlate to the development and evolu-

tion of the complex system. The activities
within each stage are risk-driven to
account for process agility and rigor to
ensure that the system objectives are met
throughout the systems development life
cycle [2]. The concepts that the ICM
framework is built upon include:
• Early verification and validation con-

cepts of the V-model.
• Concurrency concepts of the concur-

rent engineering model.
• Concepts from Agile and Lean mod-

els.
• Risk-driven concepts of the spiral

model.
• Phases and anchor points of the RUP.
• Systems of systems acquisition con-

cepts of the spiral model.
Synergistic structuring of one or more

process models within the ICM frame-
work provides the tailoring flexibility to
accommodate the varying maturity char-
acteristics of any complex system; Barry

Boehm and Jo Ann Lane provide a more
detailed discussion regarding the ICM
framework in [2]. An illustration of an
integrated DoD/ICM life-cycle frame-
work is provided in Figure 1. This view
aligns milestones A, B, and C, representing
the designated commitment point of key
stages. A more detailed discussion of
anchor points can be found in both [1]
and [4].

Our work focused on how the ICM
framework is implemented in the develop-
ment of a complex system by modeling
the behavior of a hypothetical project
schedule of a notional spacecraft system
[3]. The modeling technique, Monte Carlo
simulation, will be used to help the deci-
sion-maker evaluate schedule durations
and cost estimates that are impacted by
risk drivers. It will also aid the decision-
maker with establishing preliminary risk
management assessments.

Spacecraft System WBS
The WBS shown in Figure 2 illustrates
how the notional spacecraft system is
defined, developed, and maintained
throughout the acquisition life cycle [4].
The hierarchical breakdown of the space-
craft is used to understand the products
contained within each level of decomposi-
tion. The hierarchical levels that comprise
the products provide the work structure
necessary to develop tasks and activities
throughout the acquisition life cycle. The
products include hardware, software, doc-
uments, and processes. However, the WBS
in this case is only focused on the hard-
ware of the spacecraft at a third level of
decomposition. Each level of decomposi-
tion was used to identify all of the subsys-
tems and components that influence the
preceding level and are aggregated to the
top of the hierarchy through functional
relationships.

Spacecraft System Project Schedule
The spacecraft system’s project schedule

Figure 1: ICM and DoD Milestone Traceability

Figure 2: WBS of Notional Spacecraft System

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 8

A Framework for Systems Engineering Development of Complex Systems

July/August 2009 www.stsc.hill.af.mil 9

was used to provide key activity dates and
durations that are associated with the
products of the WBS. The WBS sets the
foundation of all scheduled activities,
thus impacting cost estimates. The dura-
tion of the scheduled activities was dri-
ven by many factors such as the technical
complexity of work to be performed,
manufacturing availability of compo-
nents to be developed, and the technical
maturity of components to be assem-
bled. These factors were risk drivers that
had an effect on the uncertainties of the
project schedule.

The project schedule illustrates two
key elements: the influence that risk dri-
vers have on schedule tasks, and the influ-
ence that tasks and activities have on each
other through precedence relationships.
For example, let’s say that Task 1 must end
before Task 2 can begin or Task 3 cannot
begin until Tasks 1 and 2 have ended,
respectively [5]. Because of the shared
interrelationships of the schedule’s tasks,
it is inevitable that any overrun in sched-
uled activities will most likely impact the
duration of other tasks and activities of
the project schedule—thus increasing the
likelihood of cost overrun. Table 1 illus-
trates a sample project schedule for the
development of the spacecraft system
implementing the ICM framework.

Risk Management
To evaluate the proposed ICM framework
effectively, it is important to organize a risk
management approach that ensures the
identification and quantification of risks
and uncertainties that may impact a pro-
ject’s schedule and cost [6]. Because of the

increasing complexity of the development
of spacecraft systems, it is likely that a pro-
ject’s schedule tasks are ultimately interre-
lated and associated with cost [7]. In the
context of system development programs,
schedule and cost risks may determine
whether or not the program will complete
the systems development on schedule and
on budget. If the program successfully
meets or exceeds the schedule and budget
expectations of the customer, it will likely
be due to the effective implementation of
risk management processes [8].

The ICM model implements risk man-
agement anchor points throughout each
stage of the life cycle in order to improve
the possibility of success for the develop-
ment of the complex system [2]. The pro-
ject schedule of the notional spacecraft
system illustrated similar risk anchor
points and was modeled with the appro-
priate stage tasks and activities against
associated risks. Cost and schedule risks
co-exist because of inherent uncertainties
regarding the time and costs required to
complete tasks of a project’s schedule [9].
To understand the uncertainties of sched-
ule and cost risks, a risk mitigation strate-
gy must be implemented to minimize the
impact of these risks.

The risk mitigation strategy to be
implemented with our research includes
the following steps:
1. Risk Identification. Evaluation of a

risk’s probability of occurrence and
the impacts or consequence of risks
against schedule and costs.

2. Risk Assessment. Quantification of
the information acquired from risk
identification to assess project sched-

ule, cost, and technical risks.
3. Risk Analysis. Quantification of risk

data in terms of probability of occur-
rence and the eventual consequence(s)
if a risk does occur.

4. Risk Mitigation. Determination of
actions to be implemented to reduce
schedule and cost risks.
These steps are supported by empirical

data that show how cost estimates are
often linked to activity durations via
schedule risk results. This is often seen
when schedule risk analysis results are
used as input to cost risk analysis and is
primarily implemented to identify the
uncertainty in activity durations in order
to assess cost risks [3].

Risk Identification
The risk identification process begins by
evaluating key risks (independent vari-
ables) and their respective uncertain
impacts, throughout the acquisition life
cycle, on the project’s schedule and cost
variables. The risk identification process is
implemented by a team of experts who
evaluate project tasks and activities against
the categorized risks that have varying
probabilities of occurrences within each
stage of the life cycle. It should also be
noted that the risk identification process
can be implemented with empirical data
for the complex system being developed.

Our research identified maturity risks
(TRL and MRL) as technical risks to be
evaluated against project events. A brief
description for TRL and MRL ratings are
provided in Table 2 (see next page) [10].
The risks were evaluated independently
against tasks and activities that would

Table 1: Sample Spacecraft Project Schedule With Notional ICM Framework

942134_Text:Aug2004.qxd 6/12/09 7:53 PM Page 9

Process Replication

10 CrossTalk The Journal of Defense Software Engineering July/August 2009

impact subsystems and components of
the spacecraft’s WBS. This approach
allows a quick and simple explanation of
how these risk drivers impact the final
schedule and cost results of the project
schedule.

The maturity risk drivers (TRL and
MRL) are independent variables that carry
a correlating metric weighting system that
establishes the readiness to implement
based upon factors such as the stability,
technical complexity, and maturity of a
spacecraft’s systems and subsystems. Had
the research been more detailed, the
results of the weighting metric system
would be used to establish an entrance and
exit criteria for identifying the most
appropriate framework or framework
combinations to be implemented through-
out the life cycle. However, that step was
bypassed for this study; the given ICM
framework was considered baseline for a

nominal matured spacecraft system. The
hypothetical impact for both TRL and
MRL risk drivers are shown in Figure 3
with a brief explanation. The example
provided for that figure summarizes the
ratings for each risk driver in a pre- and
post-mitigated format. However, the
focus of this research is to demonstrate
how a system or subsystem may have dif-
ferent maturity ratings throughout the
WBS and illustrate the impacts on tasks
and activity durations.

Figure 3 illustrates the process used to
identify risks that affect the project
schedule (generated using [5]). Each risk
is evaluated against a task where they’re
rated based upon the probability of
occurrence and their severity effects on
schedule and cost. This example demon-
strates a pre-and-post mitigation evalua-
tion—quantified after running the Monte
Carlo simulation—to address the sched-

ule’s behavioral uncertainties. The first
step in the Monte Carlo simulation devel-
opment required a qualitative risk assess-
ment of the defined risk drivers. The
qualitative risk assessment is performed
with the use of the WBS and the identifi-
cation of an expert familiar with the tasks
and activities of the development and
production phases. The input from the
expert will be used to establish the quali-
tative risk assessment with the following
important steps:
1. Develop a working list of risk drivers

that pose a threat to the project sched-
ule, cost, or development performance.

2. Develop a risk ranking guide that
establishes the probability of risk
occurrence. This study uses very low
(VL), low (L), medium (M), high (H),
very high (VH) probabilities of occur-
rence for activities and tasks of the
WBS affecting schedule and cost.

3. Identify the impacts or consequences
of the risk drivers by evaluating the
probability of occurrence and the
magnitude of impact on the schedule,
cost, and development performance.
Establish qualitative descriptions to
identify the assessed risk drivers with
the use of a risk matrix.

4. Establish a final risk score for each risk
driver after completing steps 1-3, fol-
lowed by populating the risk matrix to
illustrate the magnitude of all identi-
fied risks. Figure 3 illustrates how steps
1-4 were implemented and ranked for
MRL-1.

Risk Assessment
Risk assessment is the process of classify-
ing risks into categories characterized by
their frequency of occurrence and the
severity of their consequences. The risk
assessment can be performed through
either qualitative or quantitative evalua-
tions as well as through a comprehensive
evaluation combining both assessment
types. Qualitative risk assessment is con-
sidered to be the process of prioritizing
risks based upon the risk’s probability of
occurrence ranging from unlikely to most
likely. The second aspect of the qualitative
risk assessment is when the risks are pri-
oritized based upon the risk’s severity of con-
sequence. Quantitative risk assessment is
considered to be the process of prioritiz-
ing risks using statistical techniques to
estimate the project’s numerical outcome
(schedule/cost behaviors) based upon
identified project risks through the use of
probability distributions. Monte Carlo
simulation is commonly used to model
project behavior [11].

For our research, the quantitative risk

Table 2: TRL and MRL Rating Descriptions and Relationships

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 10

A Framework for Systems Engineering Development of Complex Systems

July/August 2009 www.stsc.hill.af.mil 11

assessment was based upon the project
schedule that was developed for the space-
craft system. The goal was to understand
the levels of uncertainty inherent within
tasks and activities of a project’s schedule.
These uncertainties (task durations) were
evaluated by probability distributions via
three-point estimates and are acquired
either through empirical data or expert
judgment. Duration values associated with
each task or activity risk are represented
by subjective bounds least likely, most likely,
and optimistic, and are analyzed after the
Monte Carlo simulation is run.

Monte Carlo simulation is designed to
iterate the project schedule’s tasks and
activities multiple times by randomly
selecting task or activity duration values
for each iteration from the probability dis-
tribution type chosen. The outcome results
of the simulation were then used to pro-
vide the possible end dates of all tasks and
activities based upon the respective associ-
ated risk drivers for the spacecraft’s project
schedule.

Risk Analysis and Results
Risk analysis was conducted using Monte
Carlo simulation to illustrate how the ICM
framework can be implemented for the
development of a spacecraft system [3].
The benefit of using this technique is that
it generates schedule and cost estimates for
uncertain input values through the use of
probability distributions. It does this by
randomly generating values and iteratively
modeling the behavior of tasks and activi-
ties of a project schedule.

The methodology was used to demon-
strate how TRL and MRL risk drivers can
be mitigated within the ICM framework,
and to understand and assess whether the
project schedule will meet the required
completion date without budget overruns.
In order to properly model the behavior

of the project schedule, the ICM frame-
work was baselined with the DoD life-
cycle stages [3]. Within each stage,
planned tasks and activities were devel-
oped for a spacecraft’s development and
traced against the TRL and MRL risk dri-
vers through risk identification. An exam-
ple of the mapping process, illustrating
the relationship of the risk drivers and the
life-cycle stages, is provided in Figure 4.

Once the risk drivers were mapped to
the appropriate activities, the uncertainty
of the risks were pre- and post-mitigated
through qualitative analysis with the
options of using expert opinion and
empirical data. Although our work was
hypothetical, the data collection method
included both expert opinion and empiri-
cal data. The probability distribution cho-
sen to be simulated throughout the life
cycle is frequently used to model expert
opinion or empirical data. The distribu-
tion used was adapted so that the expert
can provide three-point estimates that
represent pessimistic, most likely, and
optimistic inputs. The estimates corre-
spond directly to the time estimates used

as input variables for the Monte Carlo
simulation. Therefore, the triangular dis-
tribution was chosen because it is the most
commonly used distribution for modeling
expert opinion and empirical data. The tri-
angular distribution is also used when
there is very little information known
about the parameters outside the approxi-
mate estimate of its pessimistic, most like-
ly, and optimistic variables. In addition,
the uniform distribution was not chosen
because it is known to be a very poor
modeler of expert opinion and empirical
data (since all of the values within its
range have equal probability density).
Thus, the density falls sharply to zero at
the pessimistic and optimistic endpoint
estimates.

The example (provided in Figure 3)
identifies MRL-1 as the risk driver
imposed upon the concept studies task of
the Exploration and Valuation stages of
the life cycle. The MRL-1 risk driver was
then categorized and identified with a
medium impact and low probability of
occurrence. An illustration of the risk rat-
ing is provided in the risk matrix of Figure

Figure 4: TRL and MRL Maturity Trace to DoD Acquisition Life Cycle

Figure 3: Risk Identification of MRL-1

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 11

Process Replication

12 CrossTalk The Journal of Defense Software Engineering July/August 2009

3, in addition to detailing pre- and post-
mitigation definitions for that risk driver.
The risk identification and mitigation
process is a critical step in the event that
contingency scenarios need to be formu-
lated to successfully complete the project.

Now that all steps have been taken to
develop the spacecraft’s project model, the
simulation is run and the results are evalu-
ated to be realistic or unrealistic. After
running the pre-mitigated project sched-
ule, the statistical completion dates are
provided in the project schedule results
without the imposed maturity risks shown
in Figure 5. The results of the spacecraft’s
project schedule were then used to estab-
lish the baseline model for the ICM acqui-
sition life cycle. The next step, as outlined
in the Risk Identification section, requires
factoring the risk drivers into the project
schedule’s tasks and activities, followed by
running another simulation to determine
the final schedule outcome. The modeled
behavior of the risk-driven schedule is
provided in the project schedule with the
imposed maturity risks of Figure 5.

Figure 5 also illustrates the spacecraft’s
cost result for non-risk- and risk-imposed
simulations. The non-risk-imposed proba-
bility distributions for both schedule and
cost outcome aided in the evaluation of
the uncertainties of the maturity risk dri-
vers that are incorporated into the risk-
imposed results. Thus, it is clear that the
risk-imposed simulation results have
increased in cost when compared to the
pre-mitigated results.

Risk Mitigation and
Conclusions
The objective of this study was to evaluate
the implementation of the ICM frame-
work within a DoD acquisition life cycle
while imposing TRL and MRL risk dri-
vers. This was accomplished by the imple-
mentation of qualitative and quantitative
statistical techniques and the use of
Monte Carlo simulation to predict the
probability of meeting the program’s pro-
jected schedule and cost estimates. The
project schedule activities developed for
this study correlated to activities that com-
prised a notional ICM framework. As a
result, the notional ICM framework estab-
lished the baseline project schedule to be
evaluated against technology and manu-
facturing maturity throughout the system
development life cycle.

The evaluation was successfully per-
formed using a step-by-step risk manage-
ment process that was quantified through
simulation. The triangular probability dis-
tribution was chosen to be used through-
out the Monte Carlo simulation. This dis-
tribution type was chosen because three-
point estimates (pessimistic, most likely,
and optimistic) were used to represent
workflow or activity durations of the life
cycle. It should be noted that although life-
cycle-critical paths were not identified and
discussed in this study, the Monte Carlo
simulation generated random variables to
predict activity durations from each critical
path probability distribution; this was ulti-
mately used to develop the overall proba-

bility distribution of the system’s project
schedule. Because of the project schedule’s
simulation, insight was given to the deci-
sion-maker that revealed the consequences
of the imposed maturity risks against the
predicted schedule and cost estimates.

The project results contain qualitative
(expert opinion) and quantitative (empiri-
cal) data. It is assumed that the degree of
subjectivity associated with an expert’s
input is consistent with the expected data
of the project schedule. However, if the
subjective inputs are inaccurate, the results
of the simulation can be very sensitive and
reflect inaccurate schedule and cost esti-
mates. Therefore, since the risk scores
were developed by experts with some
degree of subjectivity, it is important to
consider evaluating the credibility of those
experts in order to quantify their input.
This evaluation can be performed with a
technique called the classical method [12].
Although not used within our study, it is a
credible approach to consider when vali-
dating subjective inputs.

The results of the Monte Carlo simula-
tion demonstrated that the technology and
manufacturing maturity risks influence the
overall schedule and cost to develop the
complex system; this is explicitly shown in
the final schedule and cost results of
Figure 5. The pre-mitigated status of the
project schedule represents a simulation
run where the maturity risk drivers are not
applied to the activities of the project
schedule. The post-mitigated status of the
project schedule represents a simulation
run where the maturity risk drivers are
applied to the activities of the project
schedule and a risk-mitigation strategy is
developed but not implemented. This is
consistent with the schedule slip and the
cost increase illustrated in Figure 5.
However, a simulation run that imple-
ments the risk-mitigated strategy should
show improvement in the final project
schedule and cost metrics. It should also
be noted that the simulated results were
used to illustrate two important elements:
1. There may be schedule and cost con-

sequences when applying maturity risk
drivers to the project schedule of the
acquisition life cycle.

2. The analysis can provide a level of
confidence in meeting the projected
schedule and cost estimates of the
overall project.
As a result of the risk management

process developed for this study, decision-
makers have a significant alternative miti-
gation strategy that can be implemented in
order to minimize potential schedule and
cost overruns.

For future research, this study estab-

Figure 5: Spacecraft Schedule and Cost Results of Non-Risk Imposed vs. Risk Imposed Simulations

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 12

A Framework for Systems Engineering Development of Complex Systems

July/August 2009 www.stsc.hill.af.mil 13

lishes a framework for evaluating the
impacts of maturity risks against schedule
and cost and produces results that quanti-
fy a hypothetical baseline ICM framework.
It also establishes the risk assessment
approach to quantitatively evaluate and
compare the metrics of other life-cycle
models, further identifying the strengths
and tailorability of the ICM framework.�

References
1. Pew, Richard W., and Anne S. Mavor,

eds. Human-System Integration in the
System Development Process. Wash-
ington, D.C.: The National Academies
Press, 2007.

2. Boehm, Barry, and Jo Ann Lane.
“Using the Incremental Commitment
Model to Integrate System Acqui-
sition, Systems Engineering, and
Software Engineering.” CrossTalk

Oct. 2007.
3. Brunson, Karl L., et al. “Toward a

Framework for Implementing Systems
Engineering Development for Com-
plex Systems.” Proc. of the 23rd Inter-
national Forum on COCOMO and
Systems/Software Cost Modeling and
ICM Workshop 3. Los Angeles: Uni-
versity of Southern California, 2008.

4. DoD. MIL-HDBK-881A. Washing-
ton, D.C.: DoD, 2005.

5. Primavera Pertmaster Software. “Pert-
master Tutorial.” Primavera Pertmas-
ter, 2008.

6. van Dorp, Johan R., et al. “A Risk
Management Procedure for the Wash-
ington State Ferries.” Risk Analysis
21.1 (2001): 127-142.

7. Loureiro, Geilson, Paul G. Leaney, and
Mike Hodgson. “A Systems Engineer-
ing Framework for Integrated
Automotive Development.” Systems
Engineering 7.2 (2003): 153-167.

8. Robinette, G. Jeffrey, and Janet S.
Marshall. “An Integrated Approach to
Risk Management and Risk Assess-
ment.” Incose Insight 4.1 (2001).

9. GAO. Space Acquisitions DoD Needs
to Take More Action to Address
Unrealistic Initial Cost Estimates of
Space Systems. Washington D.C.:
GAO, 2006.

10. DoD. Technology Readiness Assess-
ment Deskbook. Washington, D.C.:
Deputy Under Secretary of Defense
for Science and Technology, 2005.

11. NASA. Exploration Systems Risk
Management Plan. Risk Management
Plan. Washington, D.C.: NASA, 2007.

12. Bedford, Tim, and Roger M. Cooke.
Probabilistic Risk Analysis: Founda-
tions and Methods. New York:
Cambridge University Press, 2006.

About the Authors

Thomas A. Mazzuchi,

D.Sc., earned his doctor-
al and master’s degrees in
operations research at
George Washington Uni-
versity, and a bachelor’s

degree in mathematics at Gettysburg
College. He is chair of the Department
of Engineering Management and
Systems Engineering at George Wash-
ington University where he is also pro-
fessor of both operations research and
engineering management.

School of Engineering
and Applied Science
The George Washington University
Dept. of Engineering Management
and Systems Engineering
1776 G ST NW
STE 101
Washington, D.C. 20052
Phone: (202) 994-7424
Fax: (202) 994-0245
E-mail: mazzu@gwu.edu

Shahram Sarkani, Ph.D.,

is faculty adviser and
head of George Wash-
ington University’s (GWU)
engineering management
and systems engineering

off-campus programs office. He has
served as professor of engineering man-
agement and systems engineering since
1999, and is the founder and director
(since 1993) of GWU’s Laboratory for
Infrastructure Safety and Reliability.
Sarkani received his doctorate in civil
engineering from Rice University, and
his master’s and bachelor’s degrees in
civil engineering from Louisiana State
University.

School of Engineering
and Applied Science
The George Washington University
Dept. of Engineering Management
and Systems Engineering
2600 Michelson DR
STE 750
Irvine, CA 92612
Phone: (949) 724-9695
Fax: (949) 724-9694
E-mail: sarkani@gwu.edu

Karl L. Brunson, Ph.D.,

is currently senior staff
aerospace engineer at
Lockheed Martin where
his professional experi-
ence spans modeling and

simulation through systems engineering
and architecture development. He
received a master’s degree in aerospace
engineering with a specialization in space
systems from the University of
Maryland, and a bachelor’s degree in
aerospace engineering from Mississippi
State University. Brunson recently com-
pleted his doctorate at George Wash-
ington University in systems engineering.

Lockheed Martin Corporation
13200 Woodland Park RD
STE 9066
Herndon, VA 20171
Phone: (703) 984-7229
Fax: (703) 984-7393
E-mail: karl.l.brunson@lmco.com

Jeffrey Beach, D.Sc., is
the head of the Struc-
tures and Composites
Department at the Car-
derock Division of the
Naval Surface Warfare

Center, where he has worked since 1969.
He received his bachelor’s and master’s
degrees in aerospace engineering from
the University of Maryland, and received
his doctorate in engineering management
and systems engineering from George
Washington University.

School of Engineering
and Applied Science
The George Washington University
Dept. of Engineering Management
and Systems Engineering
20101 Academic WY
STE 227-A
Ashburn,VA 20147
Phone: (703) 726-8260
Fax: (703) 726-8251
E-mail: beachje@gwu.edu

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 13

14 CrossTalk The Journal of Defense Software Engineering July/August 2009

Software products are increasingly being
deployed in complex, potentially dan-

gerous products such as weapons systems,
aircraft, and medical devices. Software
products are critical because failure in
these areas could result in loss of life, sig-
nificant environmental damage, and major
financial loss. This might lead one to
believe that care would be taken to imple-
ment these software products using
proven, reproducible methods. Unfortu-
nately, this is not always the case.

In 1994, a Standish Group study [1]
found that 53 percent of software projects
failed outright and another 31 percent
were challenged by extreme budget over-
runs. Since that time, many responses to
the high rate of software project failures
have been proposed. Examples include
the SEI’s CMMI®, the ISO’s 9001:2000 for
software development, and the IEEE’s J-
STD-016.

One feature that these software devel-
opment standards have in common is that
they all impose requirements traceability
practices on the software development
process. Requirements traceability can be
defined as “the ability to describe and fol-
low the life of a requirement, in both a
forward and backward direction” [2]. This
concept is shown in Figure 1.

Although many facets of a software
project can be traced, the focus of this
article is on requirements traceability;
therefore, the term traceability is used to
refer to requirements traceability through-
out. See Figure 2, which provides an alter-
native view to Figure 1.

Research has shown that inadequate
traceability is an important contributing
factor to software project failures and
budget overruns [3]. As a response, there
has been an outpouring of research and
literature on the subject of traceability,
and many organizations have been striving
to improve their traceability practices.
These efforts have not been in vain. In
2006, The Standish Group updated their
1994 study [4], showing that only 19 per-

cent of software projects failed outright
with another 46 percent challenged by
budget overruns. The improvement since
1994 is clearly shown in Table 1 (see page
16); however, room for growth remains.

Although the importance of traceabil-
ity seems to be well-accepted in the soft-
ware engineering industry, research sug-
gests that many organizations still do not
understand the principles of traceability

and are struggling with implementing
traceability practices in the software devel-
opment life cycle [5]. Perhaps the biggest
need is for a better understanding of why
traceability is important and the challenges
facing its implementation. This article
attempts to address this need by studying
the factors that make traceability impor-
tant and discusses the challenges facing
traceability practices in industry.

The Importance of
Traceability
Requirements traceability has been
demonstrated to provide many benefits to
organizations that make proper use of
traceability techniques. This is why trace-
ability is an important component of
many standards for software develop-

ment, such as the CMMI and ISO
9001:2000. Important benefits from trace-
ability can be realized in the following
areas: project management, process visi-
bility, verification and validation (V&V),
and maintenance [6].

Project Management
Traceability makes project management
easier by simplifying project estimates. By
following traceability links, a project man-
ager can quickly see how many artifacts will
be affected by a proposed change and can
make an informed decision about the costs
and risks associated with that change.
Project managers can also utilize traceabili-
ty to assist in measuring project progress.
As requirements are traced to code and
later to test cases, management can estimate
the project completion status based on how
many requirements have been traced to
artifacts created later in the development
cycle. This information can be used to esti-
mate the schedule for a project during
development and can be used to assess risk.

Process Visibility
Traceability offers improved process visi-
bility to both project engineers and cus-
tomers. Through traceability, each project
engineer has access to contextual informa-
tion that can assist them in determining
where a requirement came from, its
importance, how it was implemented, and
how it was tested. Traceability can also be
viewed as a customer satisfaction issue. If
a project is audited or in the case of a law-
suit, traceability can be used to prove that
particular requirements were implemented
and tested. The availability of this infor-
mation also increases customer confi-
dence and satisfaction because it reassures
customers that they will receive the prod-
uct that they requested.

Verification and Validation
The most significant benefits provided by
traceability can be realized during the V&V
stages of a software project. Traceability
offers the ability to assess system function-
ality on a per-requirement basis, from the

Why Software Requirements
Traceability Remains a Challenge

Why do so many challenges exist in traceability practices today? While many of these challenges can be overcome through

organizational policy and procedure changes, quality requirements traceability tool support remains an open problem. After

discussing the basics of software requirements traceability, this article shows why neither manual traceability methods nor

existing COTS traceability tools are adequate for the current needs of the software engineering industry.

Dr. Hossein Saiedian
The University of Kansas

Andrew Kannenberg
Garmin International

® CMMI is registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

“Through traceability,
each project engineer

has access to contextual
information that can

assist them in
determining where a

requirement came from,
its importance, how it
was implemented, and
how it was tested.”

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 14

Why Software Requirements Traceability Remains a Challenge

July/August 2009 www.stsc.hill.af.mil 15

origin through the testing of each require-
ment. Properly implemented, traceability
can be used to prove that a system complies
with its requirements and that they have
been implemented correctly. If a require-
ment can be traced forward to a design arti-
fact, it validates that the requirement has
been designed into the system. Likewise, if
a requirement can be traced forward to the
code, it validates that the requirement was
implemented. Similarly, if a requirement
can be traced to a test case, it demonstrates
that the requirement has been verified
through testing. Without traceability, it is
impossible to demonstrate that a system
has been fully verified and validated.

Maintenance
Traceability is also a valuable tool during

the maintenance phase of a software pro-
ject for many of the same reasons that it is
valuable for project management. Initially
defined requirements for a software pro-
ject often change even after the project is
completed, and it is important to be able
to assess the potential impact of these
changes. Traceability makes it easy to
determine what requirements, design,
code, and test cases need to be updated to
fulfill a change request made during the
software project’s maintenance phase.
This allows for estimates of the time and
cost required to make a change.

Challenges in Requirement
Traceability
In spite of the benefits that traceability
offers to the software engineering indus-

try, its practice faces many challenges.
These challenges can be identified under
the areas of cost in terms of time and
effort, the difficulty of maintaining trace-
ability through change, different view-
points on traceability held by various pro-
ject stakeholders, organizational problems
and politics, and poor tool support.

Cost
One major challenge facing the imple-
mentation of traceability is simply the
costs involved. As a system grows in size
and complexity, capturing the requirement
traces quickly becomes complex and
expensive [7]. Because of this, the budget
for a project implementing traceability
must be greater than that of a project
without it. However, a project implement-

Figure 1: A View of Software Requirements Traceability

Figure 2: An Alternative View of Software Requirements Traceability

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 15

Process Replication

16 CrossTalk The Journal of Defense Software Engineering July/August 2009

ing traceability is far less likely to incur
major budget overruns because traceabili-
ty can detect project problems early in the
development process when they are easier
and cheaper to correct.

One method of dealing with the high
cost of traceability is to practice value-
based requirement tracing instead of full
tracing. Value-based requirement tracing
prioritizes all of the requirements in the
system, with the amount of time and
effort expended on tracing each require-
ment depending on the priority of that
requirement [7]. This can save a significant
amount of effort by focusing traceability
activities on the most important require-
ments. However, value-based tracing
requires a clear understanding of the
importance of each requirement in the
system; it may not be an option if full trac-
ing is a requirement of the customer or
the development process standards used
for the project.

Alternatively, the high costs of trace-
ability can be approached with the attitude
that the costs incurred will save much
greater costs further along in the develop-
ment process due to the benefits that
traceability offers to software projects.
This method does not solve the problem
of the high costs of traceability imple-
mentation, but it promotes a healthy atti-
tude towards managing costs for the entire
duration of a project instead of merely
looking at the short term.

Managing Change
Maintaining traceability through changes
to the system is another significant chal-
lenge. Studies have shown that change can
be expected throughout the life cycle of
nearly every software project [8, 9].
Whenever such changes occur, it is neces-
sary to update the traceability data to
reflect these changes. This requires disci-
pline on the part of those making the
change to update the traceability data,
which can be costly in terms of time and
effort when the changes are extensive.

Unfortunately, strong discipline in main-
taining the accuracy of traceability is
uncommon, leading to a practice of disre-
garding traceability information in many
organizations [10].

Dealing with change and its impact on
traceability is a difficult prospect. Some
COTS tools offer assistance with identify-
ing the impact of change on existing
traceability data; however, a lot of manual
time and effort is still required to update

the traceability data [11]. Alternatively,
training can help users understand the
importance of discipline in maintaining
traceability data when changes occur.
Focusing on the long-term benefits of
traceability instead of the short-term costs
can help an organization sustain a healthy
attitude toward the costs of maintaining
traceability data amidst change.

Different Stakeholder Viewpoints
A contributing factor to poor support for

traceability may be the fact that many dif-
ferent viewpoints regarding traceability
exist, even among different project stake-
holders. These different viewpoints exist
primarily because current software engi-
neering standards typically require trace-
ability to be implemented but provide lit-
tle guidance as to why and how it should
be performed [5].

Project sponsors and upper manage-
ment often view traceability as something
that needs to be implemented merely to
comply with standards [12]. This leads to
a desire to spend as little time as possible
on traceability because the benefits out-
side of standards compliance are not well
understood. This viewpoint will likely
conflict with that of project engineers
familiar with the importance of traceabili-
ty who will want to ensure that the trace-
ability performed is complete and correct.
Perhaps the best way to deal with the
problem of different stakeholder view-
points on traceability is to create an orga-
nizational policy on traceability to apply
uniformly to all projects. Because the stan-
dards requiring traceability are vague,
organizations have a lot of leeway in get-
ting their own procedures in place for
implementing traceability. This can reduce
the amount of confusion about traceabili-
ty and leads to more consistent viewpoints
among the stakeholders involved.

Organizational Problems
Organizational problems also provide a
significant challenge to the implementa-
tion of traceability. Many organizations
view traceability as a mandate from spon-
sors or a tool for standard compliance
[12]. Typically, these organizations do not
have a commitment to comprehensive
traceability practices. This leads to an ad-
hoc practice of traceability, where trace-
ability data is created and maintained hap-
hazardly.

Lack of training poses another chal-
lenge [2]. Many organizations do not train
their employees regarding the importance
of traceability and traceability is not
emphasized in undergraduate education.
This can lead to resentment on the part of
those tasked with creating and maintaining
traceability information. They may view
the added workload as impacting their
productivity due to a staff ’s insufficient
understanding of why traceability is
important.

Politics can also play a role. Individuals
may be concerned that traceability data
will be used against them in performance
reviews or as a threat to their job security
[13]. This issue can arise because the indi-
vidual who captures a piece of traceability

Table 2: Example Traceability Matrix

“If an organization
has clear

traceability policies in
place and

provides training on
how to comply
with these

policies, it is likely that
traceability will be
implemented in a
thorough manner

consistent with policy.”

Table 1: Comparison of the Standish Group’s 1994 and 2006 Results

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 16

Why Software Requirements Traceability Remains a Challenge

July/August 2009 www.stsc.hill.af.mil 17

information is usually not the one who
makes use of it later. Those involved with
creating and maintaining traceability data
may feel that they are helping others to
look good while reducing their own pro-
ductivity.

The easiest way to correct organiza-
tional problems related to traceability is
through the use of policy and training. If
an organization has clear traceability poli-
cies in place and provides training on
how to comply with these policies, it is
likely that traceability will be implement-
ed in a thorough manner consistent with
policy [12].

Poor Tool Support
Poor tool support is perhaps the biggest
challenge to the implementation of trace-
ability. Even though the International
Council on Systems Engineering (INCOSE)
has a survey (see [14]) that lists 31 differ-
ent tools claiming to provide full traceabil-
ity support, traceability tool penetration
throughout the software engineering
industry is surprisingly low. Multiple stud-
ies have found the level of commercial
traceability tool adoption to be around 50
percent throughout industry [15, 16]. The
majority of the remaining companies uti-
lize manual methods (such as manually
created traceability matrices for imple-
menting traceability), and a small percent-
age develop their own in-house traceabili-
ty tools.

Problems With Manual Traceability
Methods
Traceability information can be captured
manually through utilizing techniques
such as traceability matrices. A traceability
matrix can be defined as “a table that illus-
trates logical links between individual
functional requirements and other system
artifacts” [8]. Since traceability matrices
are in tabular form, they are typically cre-
ated using a spreadsheet or a word pro-
cessing application’s table function and are
independent of the artifacts from which
they’ve captured traceability information.
An example traceability matrix is shown in
Table 2.

Unfortunately, manual traceability
methods are not suitable for the needs of
the software engineering industry. In [17],
the authors found that the number of
traceability links that need to be captured
grows exponentially with the size and
complexity of the software system. This
means that manually capturing traceability
data for large software projects requires an
extreme amount of time and effort.

Manual traceability methods are also
vulnerable to changes in the system. If

changes occur to any elements captured in
the traceability data, the affected portions
of the traceability data must be updated
manually. This requires discipline and a
significant amount of time and effort
spent on link-checking throughout the
traceability data. Because of this, it is easy
for manually created traceability data to
become out-of-sync with the current set
of requirements, design, code, and test
cases.

Manual traceability methods are also
prone to errors that are not easy to catch.
Errors can arise from simple typographic
mistakes, from inadvertently overlooking a
portion of the traceability data (such as an
individual requirement), or from careless-

ness by the individual capturing the data.
Because traceability artifacts for large pro-
jects are often hundreds or even thou-
sands of pages in length, such errors are
difficult to detect when depending on
manual methods for error checking.

Because of these disadvantages, manu-
al traceability methods are not suitable for
anything other than small software pro-
jects. Ralph R. Young stated: “in my judg-
ment, an automated requirements tool is
required for any project except tiny ones”
[18]. Similarly, Balasubramaniam Ramesh
(in [12]) found that traceability is error-
prone, time-consuming, and impossible to
maintain without the use of automated
tools. Then why would nearly 50 percent
of software companies use manual trace-
ability methods? Is it because they are all

developing tiny projects? This is highly
unlikely. In 1994, Orlena Gotel and
Anthony Finkelstein [2] found that manu-
al traceability methods were preferred in
the industry due to shortcomings in avail-
able traceability tools. It is apparent that
this problem still exists today because
manual traceability methods are still pre-
ferred by a significant percentage of soft-
ware organizations.

Problems With COTS Traceability
Tools
Regrettably, currently existing COTS
traceability tools are not adequate for the
needs of the software engineering indus-
try. Studies have shown that existing com-
mercial traceability tools provide only sim-
plistic support for traceability [5].
Surprisingly, the tools that are available do
not fully automate the entire traceability
process; instead, they require users to
manually update many aspects of the
traceability data. This has led some
researchers to conclude that poor tool
support is the root cause for the lack of
traceability implementation [19].

COTS tools are typically marketed as
complete requirements management
packages, meaning that traceability is only
one added feature. The traceability fea-
tures usually only work if the project
methodology is based around the tool
itself. Unless the project is developed
from the ground up using a particular
tool, the tool is unable to provide much
benefit without significant rework.
Support for heterogeneous computing
environments is also lacking.

Although most tools support the iden-
tification of impacted artifacts when
changes occur, they typically do not pro-
vide assistance with updating the traceabil-
ity links or ensuring that the links and
affected artifacts are updated in a timely
manner [17]. This means that even when
tools are used, the traceability information
is not always maintained, nor can it always
be trusted to be up-to-date and accurate.
This problem is exacerbated by the fact
that tools typically only allow primitive
actions to be taken (in regards to trace-
ability).

Another issue with tools is that they
often suffer problems with poor integra-
tion and inflexibility. This has led at least
one researcher to conclude that existing
traceability tools have been developed
mostly for research purposes, and that
many projects are still waiting for tools
that do not require a particular develop-
ment or testing methodology [15].

Cost is another major disadvantage.
Although the licensing fees vary per tool,

“ ... the number of
traceability links that
need to be captured

grows exponentially with
the size and complexity
of the software system.

This means that
manually capturing

traceability data for large
software projects

requires an extreme
amount of time
and effort.”

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 17

Process Replication

18 CrossTalk The Journal of Defense Software Engineering July/August 2009

the price tends to be thousands of dollars
up front, per license, in addition to yearly
maintenance fees. Because of this, the
cost of using COTS tools is often prohib-
itive, even for fairly small teams. Such
tools are also decoupled from the devel-
opment environment, meaning that
important traceability information—such
as code modules that implement require-
ments—may not be available [20]. For this
reason, Ramesh concluded that COTS
tools have “very limited utility in capturing
dynamic traceability information” [12].

Few solutions are available for the
problem of poor tool support for trace-
ability. Many organizations shun COTS
tools altogether due to their high cost and
inflexibility, instead making use of manual
methods such as traceability matrices.
Another approach—common among
organizations concerned with high-quality
traceability information—is to develop
elaborate in-house tools and utilities to
implement traceability [5]. Unfortunately,
this approach is not always feasible since
many organizations do not have the man-
power or the knowledge necessary to
develop such tools. Therefore, poor tool
support for traceability currently remains
an open problem.

Conclusions
This article has presented an introduction
to the benefits offered by traceability and
the challenges faced by the practice of
traceability in software projects today.
Traceability offers benefits to organiza-
tions in the areas of project management,
process visibility, V&V, and maintenance.
Traceability needs to be hardcoded into a
process to be replicated iteratively on
each and every project. Unfortunately,
many organizations struggle to under-
stand the importance of traceability,
meaning that these benefits often go
unrealized.

In spite of the benefits offered by
traceability, its implementation still faces
many challenges, especially in the areas of
cost, change management, organizational
problems, and poor tool support. The
lack of quality COTS traceability tools is
a significant challenge facing the imple-
mentation of traceability in the software
engineering industry today. These chal-
lenges lead many organizations to imple-
ment only as much traceability as is
required by their customers.

The challenges faced by traceability
are not new. Many of these challenges
can be mitigated by process and organi-

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

August 24-28
13th International Software Product Line

Conference
San Francisco, CA

www.sei.cmu.edu/activities/splc2009

August 31-September 4
17th IEEE International

Requirements Engineering Conference
Atlanta, GA

www.re09.org

September 8-10
2009 Unique Identification Forum

Orlando, FL
www.uidforum.com

September 21-24
4th Annual Team Software Process

Symposium
New Orleans, LA

www.sei.cmu.edu/tsp/symposium

October 4-9
ACM/IEEE 12th International
Conference on Model Driven

Engineering Languages and Systems
Denver, CO

www.modelsconference.org

October 18-21
MILCOM 2009
Boston, MA

www.milcom.org

October 19-23
International Conference on Software

Process Improvement 2009
Washington, D.C.
www.icspi.com

2010
22nd Annual Systems and Software

Technology Conference

www.sstc-online.org

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 18

Why Software Requirements Traceability Remains a Challenge

July/August 2009 www.stsc.hill.af.mil 19

zational changes by groups interested in
improving their traceability practices.
Poor tool support for traceability remains
an exception; this is an area that is still an
open problem. Existing tools are costly
and provide only partial traceability sup-
port. This means that implementing
traceability is often tedious, requiring a
large amount of manual effort.

The lack of quality tools for imple-
menting traceability is not a technically
insurmountable problem. The solution
simply involves creating cost-effective
traceability tools that improve upon the
design and feature set of currently avail-
able tools. Such tools would serve to
greatly improve the practice of traceabil-
ity in the software engineering industry.�

References
1. The Standish Group. The Chaos

Report. 1994 <www.ibv.liu.se/content
/1/c6/04/12/28/The%20CHAOS
%20Report.pdf>.

2. Gotel, Orlena, and Anthony Finkel-
stein. An Analysis of the Require-
ments Traceability Problem. Proc. of
the First International Conference on
Requirements Engineering. Colorado
Springs, 1994: 94-101.

3. Dömges, Ralf, and Klaus Pohl.
“Adapting Traceability Environments
to Project Specific Needs.” Communi-
cations of the ACM 41.12 (2008): 55-
62.

4. The Standish Group. The Chaos
Report. 2006.

5. Ramesh, Balasubramaniam, and
Matthias Jarke. “Toward Reference
Models for Requirements Traceabili-
ty.” IEEE Transactions on Software
Engineering 27.1 (2001): 58-93.

6. Palmer, J.D. “Traceability.” Software
Requirements Engineering. Richard H.
Thayer and Merlin Dorfman, eds. New
York: IEEE Computer Society Press,
1997.

7. Heindl, Matthias, and Stefan Biffl. A
Case Study on Value-Based Require-
ments Tracing. Proc. of the 10th
European Software Engineering
Conference. Lisbon, Portugal, 2005:
60-69.

8. Wiegers, Karl. Software Requirements.
2nd ed. Redmond, WA: Microsoft
Press, 2003.

9. Boehm, Barry. “Value Based Software
Engineering.” ACM SIGSOFT Soft-
ware Engineering Notes 28.2 (2003).

10. Clarke, Siobhán, et al. Subject-
Oriented Design: Towards Improved
Alignment of Requirements, Design,
and Code. Proc. of the 1999 ACM
SIGPLAN Conference on Object-

Oriented Programming, Systems,
Languages, and Applications. Dallas,
TX: 325-329.

11. Cleland-Huang, Jane, Carl K. Chang,
and Yujia Ge. Supporting Event Based
Traceability Through High-Level
Recognition of Change Events. Proc.
of the 26th Annual International
Computer Software and Applications
Conference on Prolonging Software
Life: Development and Redevelop-
ment. Oxford, England, 2002: 595-
602.

12. Ramesh, Balasubramaniam. “Factors
Influencing Requirements Traceability
Practice.” Communications of the
ACM 41.12 (1998): 37-44.

13. Jarke, Matthias. “Requirements
Tracing.” Communications of the
ACM 41.12 (1998): 32-36.

14. INCOSE. “INCOSE Requirements
Management Tools Survey.” 2008
<www.paper-review.com/tools/rms/
read.php>.

15. Gills, Martins. “Software Testing and
Traceability.” University of Latvia.
2005 <http://www3.acadlib.lv/grey
doc/Gilla_disertacija/MGills_ang.
doc>.

16. Lempia, David L., and Steven P. Miller.
Requirements Engineering Manage-
ment. Proc. of the National Software
and Complex Electronic Hardware
Standardization Conference. Atlanta,
2006.

17. Cleland-Huang, Jane, Carl K. Chang,
and Mark J. Christensen. “Event-
Based Traceability for Managing
Evolutionary Change.” IEEE Trans-
actions on Software Engineering 29.9
(2003): 796-810.

18. Young, Ralph R. “Twelve Requirement
Basics for Project Success.” Cross-

Talk Dec. 2006.
19. Spanoudakis, George, et al. “Rule-

Based Generation of Requirements
Traceability Relations.” Journal of
Systems and Software 72.2 (2004):
105-127.

20. Naslavsky, Leila, et al. Using Scenarios
to Support Traceability. Proc. of the
Third International Workshop on
Traceability in Emerging Forms of
Software Engineering. Long Beach,
CA, 2005: 25-30.

About the Authors

Hossein Saiedian,

Ph.D., is currently a pro-
fessor of software engi-
neering at the University
of Kansas. Saiedian’s pri-
mary area of research is

software engineering and in particular
technical and managerial models for
quality software development. His past
research has been supported by the
National Science Foundation as well as
regional organizations. He has more
than 100 publications on a variety of
topics in software engineering and com-
puter science and is a senior member of
the IEEE. Saiedian received his doctor-
ate in computing and information sci-
ences from Kansas State University.

The University of Kansas
Electrical Engineering and
Computer Science
University of Kansas
12600 Quivira RD
Overland Park, KS 66213
Phone: (913) 897-8515
Fax: (913) 897-8682
E-mail: saiedian@ku.edu

Andrew Kannenberg is
a software engineer at
Garmin International in
Olathe, Kansas, and is
currently working on his
doctorate in computer

engineering at the University of Kansas.
He received a bachelor’s degree in com-
puter science from the South Dakota
School of Mines and Technology and
his master’s degree in computer science
from the University of Kansas.

Garmin International, Inc.
1200 E 151st ST
Olathe, KS 66062
Phone: (913) 397-8200
E-mail: andy.kannenberg

@gmail.com

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 19

20 CrossTalk The Journal of Defense Software Engineering July/August 2009

Well, there you have it—another successful Systems and
Software Technology Conference (SSTC) under our belts.

Before turning our attention to 2010, let’s look at some of this
year’s highlights. As we entered the Salt Palace Convention Center
after two years away (Las Vegas in 2008, and Tampa in 2007), it
felt like coming home. There were the familiar faces, room sets,
downtown construction, and wild oddly striped carpet.

The 21st SSTC 2009, themed Technology: Advancing Precision,
explored how we, as a community, can affect systems and soft-
ware by fine-tuning technology, thus, advancing the precision of
technology.

On the weekend before conference, several engineers attend-
ed the International Council on
Systems Engineering (INCOSE)
Certification course and exam. The
course provided an overview of the
“INCOSE Systems Engineering
Handbook” Version 3.1 and helped
engineers prepare for the exam. For
those who sacrificed their pre-confer-
ence weekend to attend, thank you!
Keep us informed on how those
exams go.

Monday started with six morning-
long tutorials with presentations on
safety and security, earned value man-
agement, multi-level secure systems,
systems of systems engineering, engi-
neering system architectures, and
requirements. Monday afternoon
started with the official conference
kickoff: the Opening General
Session with Lt. Gen. William L. Shelton, Chief of Warfighting
Integration and Chief Information Officer, Office of the
Secretary of the Air Force.

Tuesday began with the presentation of the Stevens Award to
Larry Constantine, professor at the University of Madeira
(Portugal). Constantine shared several insights, including his belief
that the interfaces of applications intended for use must be rec-
ognized as more than mere surface manifestations of underlying
process and information models, and interaction design must be
seen as “more than mere polish of the surface.”

The afternoon was dedicated to track presentations with such
speakers as Joe Heil and Karen Anderson Cianci.

As is usually the case, the trade show proved to be one of the
SSTC highlights. Sponsored by McCabe Software, the trade show
hosted about 30 organizations, including our own Software
Technology Support Center (STSC). The trade show was almost
always packed, but the lines were probably longest during
Wednesday’s lunch, which featured the attendee-favorite choco-
late fountain.

Wednesday’s conference proceedings began with two concur-
rent breakfast speakers: Jorge Edison Lascano, a Fulbright Scholar
and Department of Computer Science Faculty Member at the
Ecuadorian Army Polytechnic School, and Roger Stewart and

Lew Priven, managing directors for the Stewart-Priven Group.
Thursday, the last day of the SSTC, started with six presenta-

tion tracks in the topic areas of the developmental life cycle,
assurance and security, new concepts and trends, policies and
standards, processes and methods, and systems and software
modernization.

The closing General Session speaker was Anita D. Carleton, a
senior member of the technical staff at the SEI, who gave her
presentation “Recognizing Quality Work” during lunch. Along
with exploring that the fundamental problem of quality manage-
ment is not properly recognizing quality work, Carleton shared
examples of how the principles of the Team Software Process are

expanding into more than just
code processes. She also
explained how the Mexican
government has used these
new techniques to achieve
their goal of making their
country the world leader in
providing quality software
products and services by 2013.

Every year, we love to see
CrossTalk authors as
major participants in the pro-
ceedings. Along with Stewart
and Priven (March/April
2009) and Carleton (May/June
2009), recent CrossTalk

contributors speaking at the
SSTC included Dr. Benjamin
Brosgol (October 2008), Dr.
Kelvin Nilsen (February

2009), Dr. David A. Cook (a regular BackTalk contributor), and
Arlene F. Minkiewicz (March/April 2009).

CrossTalk is a great forum for information, and the SSTC
allows everyone to take that knowledge to another level with
learning, conversation, and collaboration. Some of our early feed-
back includes: “It was a good mix of topics, relevant and timely,”
“The diversity of topics presented provided for a very good con-
ference,” “... lots of good topics and information,” “A good mix
of general principles and specific techniques and methods,” and
“I found this year’s SSTC to be the most informative so far.”

The SSTC, first held in 1989 (known then as the Software
Technology Conference), is sponsored by the Air Force through
the STSC at Hill AFB, Utah. Every year, the aim has been to pro-
vide information and training on software engineering issues and
technologies.

For those of you who attended, we extend our gratitude and
hope you enjoyed your time at the SSTC and in Salt Lake City.
We’ll watch for you again next year. SSTC 2010 conference infor-
mation will begin appearing in your e-mail and mailboxes begin-
ning in mid-August with the “Call for Speakers” brochure. We
can’t wait to start reading those abstracts!

—CrossTalk and STSC Staff

21stAnnual Systems and Software Technology Conference 2009:
Technology: Advancing Precision

309 SMXG Director Karl Rogers presents a speaker thank-you gift to
Lt. Gen. William L. Shelton after Monday’s opening general session.

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 20

July/August 2009 www.stsc.hill.af.mil 21

Photos courtesy of Bob Smith and STSC staff.

Left: Joe Thiessens from the Software Center of Excellence talks about
requirements in one of the conference sessions.
Below right: Attendees use the breaks to play catch-up on work and
check messages, or just make lunch plans.

Right: The CrossTalk

author lunch provided an oppor-
tunity to meet all our wonderful
authors who contribute to our
journal every year.

Below left: SSTC registration
staff hands out badges and pro-
vides information for all the
SSTC attendees.

Below right: Conference atten-
dees congregate outside the trade
show for a mid-morning coffee
break and snack.

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 21

22 CrossTalk The Journal of Defense Software Engineering July/August 2009

Goals that are measured will be
achieved. In almost every area of life,

setting goals and monitoring achievement
are the foundations for success. Take a
relay team in track or swimming. What dri-
ves these athletes to continuously
improve? There are always competitors to
beat, a number 1 ranking to achieve, or a
record to break. Many of the same drivers
apply to the software industry. Software
development is a human activity and, as
such, demands that organizations continu-
ously improve their performance in order
to stay in business. Software measurement
is a primary approach to control and man-
age projects and processes and to track
and improve performance.

The way software measurement is used
in an organization determines how much
business value that organization actually
realizes. Software measurements are used
to:
• Understand and communicate.
• Specify and achieve objectives.
• Identify and resolve problems.
• Decide and improve.

Today, improving a business (and its
underlying processes) is impossible with-
out continuous measurements and con-
trol. For some industries and organiza-

tions, this is demanded by laws (such as
the Sarbanes-Oxley Act) and liability regu-
lations. For all organizations, it is a simple
question of accounting and finance con-
trol. The measurement process is an
inherent part of a business process (see
Figure 1). Therefore, software engineer-
ing—as part of the product development
business process—also needs controlling
and measurement. Software measure-
ments include performance measurement,
project control, and process efficiency and
effectiveness.

Measurements are management tools.
Consequently, measurements must be
governed by goals such as reducing pro-
ject risks or improving test efficiency, oth-
erwise they simply build up into data ceme-
teries. Figure 1 shows this objective-driven
generic measurement process, known as
E-4 [1]:
1. Establish concrete improvement or

control objectives and the necessary
measurement activities.

2. Extract measurements for the estab-
lished performance control needs.

3. Evaluate this information in view of a
specific background of actual status
and objectives.

4. Execute decisions and actions to

reduce the differences between status
and objectives.
The E-4 measurement process is

based on the Deming Cycle (Plan, Do,
Check, Act) and extends classic measure-
ment paradigms, such as the goal-ques-
tion-metric approach, by adding an imme-
diate action-focus. It follows the observa-
tion that to effectively and continuously
improve a process, it is important to first
stabilize it, keep it in its specification lim-
its, and continuously improve it [2]. The
major difference is E-4’s clear focus on
goal-oriented measurement and execution
of decisions at the end of the four steps.

The E-4 measurement process is gov-
erned by ISO/IEC 15939 [3], a standard
that summarizes how to plan and imple-
ment a measurement process. It consists
of two parts: The first part establishes the
measurement program and prepares it
within the project or organization. The
second part is about execution: You
extract data, evaluate it, and execute cor-
rective actions based on the outcome of
the measurement analyses. The second
part—driven by the first part—sets the
standards and defines what to do with the
measurements. It is not enough to simply
collect numbers and report them.
Measurements are only effective if they
are embedded as tools to support deci-
sion-making and to drive the implementa-
tion of decisions. For the fundamentals of
software measurement and practical solu-
tions, I refer to the book “Software
Measurement” [1].

Project Measurement
Project measurement is the major applica-
tion of software measurement. Software
measurement is an absolutely necessary
precondition for project success, but only
one-third of all software engineering com-
panies systematically utilize techniques to
measure and control their product releas-
es and development projects [4].

The goal of project measurement is to
master the project and finish it according
to commitments. What is needed is a way
to determine if a project is on track or

Software Project and Process Measurement

Software measurement is the discipline that ensures that we stay in control and can replicate successful processes. It applies to

products (e.g., ensuring performance and quality), processes (e.g., improving efficiency), projects (e.g., delivering committed

results), and people (e.g., evolving competence). This article discusses software measurement and provides practical guidance for

project and process measurement.

Dr. Christof Ebert
Vector Consulting Services

Figure 1: A Generic Measurement Process

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 22

Software Project and Process Measurement

July/August 2009 www.stsc.hill.af.mil 23

not. Whether it is embedded software
engineering, the development of a soft-
ware application, or the introduction of a
managed IT-service, demand outstrips the
capacity of an organization. As a result,
I’ve observed the acceptance of impossi-
ble constraints in time, content, and cost;
as a direct consequence of acceptance
comes an increase in churn and turmoil—
as well as budget overruns, canceled pro-
jects, and delays. Still, far too many pro-
jects fail to deliver according to initial
commitments simply because of insuffi-
cient or no adequate measurement.

While many organizations claim that
project work is difficult due to changing
customer needs and high technology
demands, the simple truth is that they do
not understand the basics: estimation,
planning, and determining progress dur-
ing the project. Consequently, they fully
lose control once customer requirements
change.

Project control can help in avoiding
these problems by answering a few simple
questions derived from the following
management activities:
• Decision-making. What should I do?
• Attention directing. What should I

look at?
• Performance evaluation. Are we

doing a good or bad job?
• Improvement tracking. Are we

doing better or worse than in the last
period?

• Target setting. What can we realisti-
cally achieve in a given period?

• Planning. What is the best way to
achieve our targets?
Project monitoring and control is defined as

a control activity concerned with identify-
ing, measuring, accumulating, analyzing,
and interpreting project information for
strategy formulation, planning, and track-
ing activities, decision-making, and cost
accounting. As such, it is the basic method
for gaining insight into project perfor-
mance and is more than just ensuring the
overall technical correctness of a project.
The most important elements are the exis-
tence of a closed loop between the object
being controlled, the actual performance
measurements, and a comparison of tar-
gets against actuals. Figure 2 shows this
control loop. The project with its underly-
ing engineering processes delivers results,
such as work products. It is influenced and
steered by the project goals. Project con-
trol captures the observed measurements
and risks and relates them to the goals. By
analyzing these differences, specific
actions can be taken to get back on track
or to ensure that the project remains on
track. These actions serve as an additional

input to the project beyond the original
project targets. Making the actions effec-
tive is the role of the project manager.

A client recently asked us for help in
improving engineering efficiency at their
organically grown embedded software
business. Software costs initially did not
matter when there were only a few engi-
neers. As things progressed, software
dominated hardware and cost increases
were out of control. Customers liked the
technology but increasingly found quality
issues and, when the customers made
audits, did not really find a decent engi-
neering process. Our Q&A with the client
went like this:
Us: “How do you set up a software pro-

ject?”
The Client: “Well, we take the require-

ments, build a team of engineers, and
follow our V-shaped master plan.”

Us: “Is the planning typically accurate?”
The Client: “No, but we don’t have any

better basis.”
Us: “How do you make sure you have the

right quality level?”
The Client: “Well, we do a unit test, inte-

gration test, and system test. But, in
fact, we test too much and too late.”

Us: “Is your cost in line with expectations
or could you do better?”

The Client: “We really don’t know about
how this all is measured and what to
learn from measurements. That’s why
we invited you.”
In terms of software and technology,

this client was way above average.
However, it was unclear to management
and engineers how to assess status, miti-
gate risks, and improve performance. The
project managers had no history database
to decide on release criteria. Requirements
were changing, but without any control. It

is exactly this pattern of exciting technolo-
gy and skills—combined with fast growth
but insufficient engineering and manage-
ment processes—that eventually hits many
companies in embedded software develop-
ment. Finally, the client’s customers con-
cluded that despite all of the technical
advantages, processes and practices were
below current professional software engi-
neering expectations. A natural first step
on our side was to introduce a lean yet
effective measurement program.

To get started without much overhead,
our team recommended a lean set of pro-
ject indicators [1, 5, 6]. They simplified the
selection by reducing the focus on project
tracking, contractor oversight, and pro-
gram management perspective. Here is
our short list of absolutely necessary pro-
ject measurements:
• Requirements status and volatility.

Requirements status is a basic ingredi-
ent to tracking progress based on
externally perceived value. Always
remember that you are paid for imple-
menting requirements, not just gener-
ating code.

• Product size and complexity. Size
can be measured as either functional
size in function points or code size in
lines of code or statements. Be pre-
pared to distinguish according to your
measurement goals for code size
between what is new and what is
reused or automatically generated
code.

• Effort. This is a basic monitoring
parameter to assure that you stay with-
in budget. Effort is estimated up-front
for the project and its activities.
Afterwards, these effort elements are
tracked.

• Schedule and time. The next basic

Figure 2: Measurements Provide a Closed Feedback Loop for Effective Corrective Action

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 23

Process Replication

24 CrossTalk The Journal of Defense Software Engineering July/August 2009

monitoring measurement is ensuring
that you can keep the scheduled deliv-
ery time. Similar to effort, time is bro-
ken down into increments or phases
that are tracked based on what is deliv-
ered so far. Note that milestone com-
pletion must be lined up with defined
quality criteria to avoid poor quality
being detected too late.

• Project progress. This is the key mea-
surement during the entire project exe-
cution. Progress has many facets:
Simply look to deliverables and how
they contribute to achieving a project’s
goals. Typically, there are milestones
for the big steps, and earned value and
increments for the day-to-day opera-
tional tracking. Earned value tech-
niques evaluate how results (such as
implemented and tested requirements
or closed work packages) relate to the
effort spent and elapsed time. This
then allows for estimating the cost to
complete and remaining time to com-
plete the project.

• Quality. This is the most difficult
measurement, as it is hardly possible to
accurately forecast whether the prod-
uct has already achieved the right qual-
ity level that is expected for opera-
tional usage. Quality measurements
need to predict quality levels and track
how many defects are found compared
to estimated defects. Reviews, unit test,
and test progress and coverage are the

key measurements to indicate quality.
Reliability models are established to
forecast how many defects still need to
be found. Note that quality attributes
are not only functional but also relate
to performance, security, safety, and
maintainability.
These measurements must be actively

used for the weekly tracking of status,
risks, and progress (e.g., increment avail-
ability, requirements progress, code deliv-
ery, defect detection), while others are
used to build up a history database (e.g.,
size, effort). Most of these measurements,
such as defect tracking, are actually by-
products from operational databases. This
ensures sufficient data quality to compare
project status across all projects of a port-
folio. External benchmarks (such as pro-
vided in [1,6]) help in bootstrapping a
measurement program as they immediate-
ly point towards inefficiency and below-
average performance.

To ease monitoring and avoid getting
lost in the fog of numbers, projects
should aggregate the relevant information
in a standardized dashboard. Figure 3
shows a simplified dashboard of how we
have utilized it with many clients. It
includes milestone tracking, cost evolu-
tion, a selection of process measurements,
work product deliveries, and faults with
status information. There can be both
direct measurements (e.g., cost) as well as
indirect measurements and predictions

(e.g., cost to complete). Such dashboards
provide information in a uniform way
across all projects, thus not overloading
the user with different representations and
semantics to wade through. All projects
within the organization must share the
same set of consistent measurements pre-
sented in a unique dashboard. A lot of
time is actually wasted by reinventing
spreadsheets and reporting formats when
the project team should be focused on
creating value.

Measurements—such as schedule and
budget adherence, earned value, or quali-
ty level—are typical performance indica-
tors that serve as traffic lights on the status
of the individual project. Only projects in
amber and red status that run out of agreed
variance (which, of course, depends on
the maturity of the organization) would
be investigated. The same dashboard is
then allowed to drill down to more
detailed measurements to identify root
causes of problems. When all projects
follow a defined process and utilize the
same type of reporting and performance
tracking, it is easy to determine status,
identify risks, and resolve issues—without
getting buried in the details of micro-
managing the project.

Process Measurement
Software engineering processes determine
the success of organizations as well as
how they are perceived in the marketplace.

Figure 3: Measurement Dashboard Overview

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 24

Project and Process Measurement

July/August 2009 www.stsc.hill.af.mil 25

Purchasing organizations worldwide are
using tools such as CMMI to evaluate
their suppliers, be it in automotive, infor-
mation/communication technologies, or
governmental projects [1, 7]. Markets have
recognized that continuous process
improvement contributes substantially to
cost reductions and quality improvement.
An increasing number of companies are
aware of these challenges and are proac-
tively looking at ways to improve their
development processes [8]. Suppose a
competitor systematically improves pro-
ductivity at a relatively modest annual rate
of 10 percent (as we can see in many soft-
ware and IT companies). After only three
years, the productivity difference is (1.13)
= 1.33, or a 33 percent advantage. This
directly translates into more capacity for
innovation, higher margins, and improved
market positioning.

Software measurement is a necessary
precondition to performance improve-
ment. The concept of objective-driven
process improvement will focus processes
on the objectives they must achieve.
Processes are a means to an end and need
to be lean, pragmatic, efficient, and effec-
tive—or they will ultimately fail, despite all
the push one can imagine. Figure 4 shows
this goal-driven relationship from business
objectives to concrete annual performance
objectives (on an operational level) to spe-
cific process performance measurements.

What follows are eight integral soft-
ware measurement steps, showing how
objective-driven process improvement is
translated into concrete actions, and how
software measurements are used to
improve processes. Each step includes an
example—all taken from the same medi-
um-sized company that Vector recently
consulted—showing how we put each step
into action.

Step 1: Identify the organization’s
improvement needs from its business
goals
These business goals provide the guidance
for setting concrete engineering perfor-
mance improvement objectives on a
short-term basis. Example: The business
goal with our client was to improve rev-
enues and cash flows and to reduce cost of
non-performance from schedule delays.

Step 2: Define and agree on the
organization’s key performance
indicators (KPIs)
Such KPIs are standardized across the
organization and ensure visibility, account-
ability, and comparability. Naturally, KPIs
must relate to the business goals.
Measurements should drive informed

decision-making. They must be used for
effectively communicating status and
progress against the objectives set for the
business, process, or project. Measure-
ments, both direct and indirect, should be
periodically evaluated in conjunction with
the driving objectives and to identify
problems or derive decisions. Example:
The selected performance indicator was
schedule predictability, measured as the
normalized delays compared to the origi-
nally agreed deadline. Schedule changes
(after a project had started) were not con-
sidered in this measurement. This avoided
the argument that a specific delay was jus-
tified due to changing requirements. Once
such an excuse is accepted, delays typical-
ly increase—as do costs (due to the
changes). In this case, we found almost
unanimous agreement from product man-
agers and business owners who found that
the lack of schedule changes helped avoid
the downward spiral of requirements
changes, delays, and cost overruns.

Step 3: Identify the organization’s
hot spots, such as areas where they
are feeling the most pain internally
or from customers
Typical techniques include root cause
analysis of defects and customer surveys.
Example: Average schedules in the com-
pany were 45 percent behind initial com-
mitments. A root cause analysis of delays
was performed: 40 percent of delays came
from insufficient project management; 30
percent from changing requirements; 20
percent from supplier delays; and 10 per-
cent from other causes. Looking to the
highest-ranking root causes, we found
insufficient planning and control within
the project. Often, requirements were

added or changed following a customer
question—rather than including the cus-
tomer in the trade-off and impact analysis.
When speaking to client-customers, this
became even more evident: Customers
perceived such ad-hoc changes as a weak-
ness and missed clear guidance and leader-
ship on feature content.

Step 4: Commit to concrete
improvement objectives
These improvement objectives should
directly address the mentioned weaknesses
and simultaneously support the overarch-
ing business objective. We use the acronym
SMART to outline good objectives:
• Specific (precise).
• Measurable (tangible).
• Accountable (in-line with individual

responsibilities).
• Realistic (achievable).
• Timely (suitable for current needs).

These objectives are reviewed and
approved by upper-level managers before
proceeding further. This ensures that pri-
orities are appropriate and that nothing
relevant has been overlooked or misun-
derstood. Example: Two improvement
objectives, improving estimations and
improving requirements development,
were agreed upon. The respective perfor-
mance targets were agreed to in a manage-
ment seminar to achieve buy-in. Each pro-
ject was required to have two estimates
where the first was allowed to deviate by
20 percent and the second to deviate by 10
percent. After the project started, the
requirements change rate was required to
be under 20 percent—except that cus-
tomers would, after a clear decision-mak-
ing process, agree on trade-offs and pay
for the changes. Time-boxing and incre-

Figure 4: Applying the E-4 Measurement Process to Achieve Improvements

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 25

Process Replication

26 CrossTalk The Journal of Defense Software Engineering July/August 2009

mental development with prioritized
requirements was then introduced to
achieve improvement objectives. Require-
ments priorities were agreed upon across
impacted stakeholders from product
management, engineering, and market-
ing/sales before each new project started.

Step 5: Identify specific levers1 to
start improvements and connect
them to ROI planning
This is typically best done when using a
process improvement framework such as
CMMI [6]. This framework provides the
necessary guidance regarding which best
practices to apply and how processes
relate to each other. Without the right
levers, chances are high that objectives
will not be reached. Example: Focus was
on requirements development, require-
ments management, technical solutions,
project planning, and project monitoring
and control. Project managers were edu-
cated in project management techniques
and negotiation skills.

Step 6: Perform a brief gap analysis
of the selected process areas to
identify strengths and weaknesses
This systematic look at weaknesses helps
to focus limited engineering resources
where it matters most. Example:
Requirements were collected rather than
developed; requirements management
satisfied the basic need for change man-
agement; engineering was too technolo-
gy-driven and was extended to capture
business reasoning; project planning
showed severe weaknesses in estimation
and feasibility analysis; and project moni-
toring and control showed weaknesses in
getting stakeholder agreement on
changes.

Step 7: Develop a concrete action
plan for the identified weaknesses
Avoid trying to change all weaknesses at
the same time. Use increments to subdi-
vide bigger changes. Consider available
resources and skills and get external sup-
port if you lack competencies, such as
change management. Example: The most
urgent need was project planning. A ded-
icated one-month initiative was launched
right away to install a suitable estimation
method and to train people on it. A tool
for feasibility analysis was introduced in
parallel because not much of the organi-
zation’s own historical data was available.
A historical database was installed for a
set of key project measurements. In a
second phase, earned value analysis was
introduced. After three months, require-
ments development was launched under

the leadership of product management.

Step 8: Implement improvements
and deliver tangible results
Implement the agreed-upon changes to
operational projects and measure
progress against the committed improve-
ment objectives. Example: Performance
measurements were collected from all
ongoing projects. There weren’t repri-
mands for insufficient performance, but
it was carefully analyzed. We found with
this client that too many requirements
changes lacked a clear specification,
analysis, and commitment by the product
manager. Consequently, a strong focus
was given towards change management
and change review boards2. A weekly pro-
ject review was introduced after a few
weeks, enhanced with daily Scrum meet-
ings of development teams. Require-
ments changes passing the change review
board had to have their proper business
case or were not accepted. Although the
results proved valid, marketing and sales
were unhappy because they wanted flexi-
bility and no accountability for the
changes. This improvement reduced
requirements changes (within the first
three months) substantially. The first few
projects had 20 percent schedule overrun
(compared to the previous average of 45
percent) and two of them were even
close to 10 percent. These two were fur-
ther evaluated to identify best practices.

As it turned out, the project managers
demanded requirements reviews by prod-
uct managers and testers before accept-
ing requirements to change review
boards. The quality of requirements sub-
stantially improved. This change was
immediately pushed forward by senior
management for all projects. As it turns
out, testers were unhappy because they
didn’t have the time scheduled for doing
the reviews. Rather than demanding over-
time, senior management asked for five
percent slots (two hours) each week; this
proved to be sufficient time to review
one to three requirements with the neces-
sary depth.

Getting More From Your
Measurements
Measurement programs mostly fail
because they are disconnected from actu-
al business. Too often, things are mea-
sured that do not matter at all and there
is usually no clear improvement objective
behind what is measured. Often the col-
lected measurements and resulting
reports are useless, only creating addi-
tional overhead. In the worst cases, they

hide useful and necessary information.
We have seen reports on software pro-
grams with more than 50 pages full of
graphs, tables, and numbers. When asked
about topics such as cost to complete,
expected cost of non-quality after han-
dover, or time-to-profit, the organization
did not have a single number. Sometimes
numbers are even created to hide reality
and attract attention to what looks good.
Be aware that measurements are some-
times abused to obscure and confuse
reality.

The primary question with software
measurement is not “What measure-
ments should I use?” but rather “What
do I need to improve?” It is not about
having many numbers but rather about
having access to the exact information
needed to understand, manage, and
improve your business. This holds true
for both project and process measure-
ment.

As a professional in today’s fast-paced
and ever-changing business environment,
you need to understand how to manage
projects on the basis of measurements
and forecasts. You need to know which
measurements are important and how to
use them effectively. Here are some suc-
cess factors to pragmatically use measure-
ments:
• Estimate project time and effort and

realistically set deadlines.
• Check feasibility on the basis of given

requirements, needs, and past project
performance (productivity, quality,
schedule, and so on). Do not routine-
ly overcommit.

• Manage your requirements and keep
track of changes. Measure require-
ments changes and set thresholds of
what is allowed.

• Know what value means to your client
or customer. Track the earned value
of your project.

• Understand what is causing delays
and defects. Do not let delays accu-
mulate. Remove the root causes and
do not simply treat the symptoms.

• Be decisive and communicate with a
fact-based approach. Avoid disputes
with management, clients, and users.

• Deliver what matters. Use measure-
ments to keep commitments.

• Continuously improve by analyzing
your measurements and then imple-
menting respective objective-driven
changes. Follow through until results
are delivered.
Practitioners should help manage-

ment so that they make decisions on the
basis of measurements. This will give
management the necessary information

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 26

July/August 2009 www.stsc.hill.af.mil 27

before and after the decision so that they
can follow the effects and compare them
to the goals. Managers should ensure that
decisions are made based on facts and
analyses. They should always consider
number 4 in the E-4 process (executing
decisions and actions), and make sure
that decisions move the organization
towards agreed-upon objectives.

Accountability means setting realistic
and measurable objectives. Objectives
such as reduce errors or improve quality by 50
percent are not useful. The objective
should be clear and tangible: Reduce the
number of late projects by 50 percent for this
year compared to the previous year. These
objectives must end up in a manager’s key
performance indicators. Projects using
unclear oral, memo, or slide reports will
most certainly fail to deliver according to
commitments. Projects using a standard
spreadsheet-based progress reporting—
related to requirements, test cases, and
defects versus plans—will immediately
receive the necessary attention if they
deviate. With this attention, corrective
action will follow, and the project has a
good chance to recuperate because of
sufficiently early timing.

Goals that are measured will be
achieved. The reason is very simple:
Once you set a SMART objective and fol-
low it up, you make a commitment to
both yourself and your team or manage-
ment group. As humans—and specifical-
ly as engineers—we want to deliver
results. Measurement provides the stimu-
lus and direction to reach our goals.�

References
1. Ebert, Christof, and Reiner Dumke.

Software Measurement. New York/
Heidelberg: Springer-Verlag, 2007.

2. Juran, Joseph M., and A. Blanton
Godfrey. Juran’s Quality Handbook.
New York: McGraw-Hill Professional,
2000.

3. ISO/IEC. ISO/IEC 15939:2002. Soft-
ware Engineering – Software Measure-
ment Process. 2002.

4. Kraft, Theresa A. “Systematic and
Holistic IT Project Management Ap-
proach for Commercial Software With
Case Studies.” Information System
Education Journal 63.6: 1-15. 23 Dec.
2008 <http://isedj.org/6/63/>.

5. Carleton, Anita D., et al. “Software
Measurement for DoD Systems:
Recommendations for Initial Core
Measures.” Technical Report CMU/
SEI-92-TR-19. Sept. 1992 <www.sei.
cmu.edu/pub/documents/92.reports
/pdf/tr19.92.pdf>.

6. Ebert, Christof, and Capers Jones.

“Embedded Software: Facts, Figures
and Future.” IEEE Computer 42.4:
42-52, Apr. 2009.

7. Chrissis, Mary Beth, Mike Konrad, and
Sandy Shrum. CMMI: Guidelines for
Process Integration and Product
Improvement. 2nd ed. Boston:
Addison-Wesley Professional, 2006.

8. Gibson, Diane L., Dennis R. Gold-
enson, and Keith Kost. “Performance
Results of CMMI-Based Process
Improvement.” Technical Report
CMU/SEI-2006-TR-004. Aug. 2006
<www.sei.cmu.edu/pub/documents/
06.reports/pdf/06tr004.pdf>.

Notes
1. “Levers” in this case mean to set up

the improvement project in a way that
the different changes follow some
order, won’t come ad-hoc and isolated,
and would thus meet objectives.

2. Change review boards are staffed with
engineering and product managers and
ensure that both technical and busi-
ness rationale and impacts of changes
are considered. They then make
informed and firm decisions.

About the Author

Christof Ebert, Ph.D.,

is managing director and
partner at Vector Con-
sulting Services. He is
helping clients worldwide
to improve technical

product development and to manage
organizational changes. Prior to working
at Vector, he held engineering and man-
agement positions for more than a
decade in telecommunication, IT, aero-
space, and transportation. A measure-
ment practitioner who has worked for
Fortune 500 companies, Ebert authored
“Software Measurement,” published by
Springer, now in its third fully revised
edition.

Vector Consulting Services
Ingersheimer Straße 24
D-70499 Stuttgart
Germany
Phone: +49-711-80670-0
E-mail: christof.ebert@

vector-consulting.de

Project and Process Measurement

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 27

Departments

28 CrossTalk The Journal of Defense Software Engineering July/August 2009

Be a CrossTalk Backer
CrossTalk would like to thank the accompanying
organizations, designated as CrossTalk Backers,

that help make this issue possible.

CrossTalk Backers are government organizations that provide
support to forward the mission of CrossTalk.

Co-Sponsors and Backers are our lifeblood.

Backer benefits include:
• An invaluable opportunity to share information from your

organization’s perspective with the software defense industry.
• Dedicated space in each issue.
• Advertisements ranging from a full to a quarter page.
• Web recognition and a link to your organization’s page via

CrossTalk’s Web site.

Please contact Kasey Thompson at (801) 586-1037 to find out
more about becoming a CrossTalk Backer.

309th Software Maintenance Group

OO-ALC Engineering Directorate

309th Electronics Maintenance Group

CrossTalk would like to
thank our current Backers:

Cost Analysis Group

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 28

July/August 2009 www.stsc.hill.af.mil 29

Software Engineering Technology

Given the anticipated benefit of deliv-
ering business and operational value

improvements—such as cost savings, bet-
ter business processes, and increased
accessibility to information—SOA has
become a high-priority focus area for the
federal government. As various organiza-
tions in the government research adopting
an SOA, they often struggle with funda-
mental questions:
• Why should we adopt an SOA

approach for our IT portfolio? Is it
the best approach for our organiza-
tion?

• What are the inhibitors to an SOA
approach? What causes the failure of
SOA initiatives and how do we avoid
these pitfalls?

• How do we reduce risk? What are
the approaches for reducing risk, given
various implementation techniques,
standards, and commercial products?

• What results should we expect from
implementing an SOA? How should
the organization govern its SOA to
maximize the business value of its
investment?
As the government evolves their archi-

tectures to a service orientation on a large
scale, leadership will look for the lessons
learned by industry and other government
organizations. While practical experiences
clearly demonstrating the benefits of an
SOA approach will continue to emerge,
research into initial experiences suggests
that the following set of eight best prac-
tices can enable an effective SOA adop-
tion strategy.

1. Determine if an SOA is the best
approach
When used appropriately, an SOA
approach can provide significant value to
an organization—but it is not always the
right approach or the best fit. In many sit-
uations, underlying business requirements
make the adoption of contemporary SOA
technologies impractical. For example,

specialized security requirements, an orga-
nization’s inherent network limitations, or
high bandwidth data feeds can be impedi-
ments to applying industry-standard con-
temporary SOA technologies.

It is possible to employ custom tech-
nologies to meet specialized needs; howev-
er, there is significant value in using industry
standards when establishing an SOA port-
folio. Implementations that need to deviate

from standards are less likely to benefit
from interoperability and later improve-
ments in standards-based technology.

Before embarking on an SOA imple-
mentation, consider whether your under-
lying business and technical requirements
can be met with contemporary SOA tech-
nologies and standards.

2. Start SOA activities with the focus
of solving business and operational
challenges
Federal leaders should employ services to
support key business processes and SOA
efforts should be driven by the organiza-
tion’s business and operational goals.
Randy Heffner explains that an SOA is
always best with a business process focus:

You can build a much stronger
conversation around doing SOA
on a project if you focus conversa-
tions on the business’ high-priority
process pain points and opportuni-
ties. [1]

Contemporary SOA approaches facili-
tate a reduction in an organization’s IT
portfolio by providing services that are
commonly used across many business
processes. These business process services
enable an organization’s needs to be reli-
ably met by another organization’s capa-
bilities. Gene Leganza writes:

As government agencies re-engi-
neer their business processes to
provide horizontal integration to
improve services to citizens, other
government agencies, and their pri-
vate-sector partners, SOA allows
the agencies to design application
components that instantiate the
atomic elements of business ser-
vice delivery in explicit pieces. [2]

When used properly, an SOA enables
IT to support business goals. By focusing
on services that provide business process
capabilities reused across the enterprise, it
is more likely that the enterprise will real-
ize the value of the SOA investment.

3. Examine your data, realizing
that an SOA does not solve data
problems—and it may expose
them [3]
The flexibility of SOA in decoupling
applications from data may expose issues
with semantic differences in data, data
quality, and ensuring data availability.

Fundamentally, services share data
and, unless providers and consumers have
a common understanding of the data that
constitutes the payload of a service,
shared services will not be possible. When
deploying an SOA, it is important to con-
sider your data by defining a common data
or abstraction layer, developing mappings

A Perspective on Emerging Industry SOA Best Practices©

Using a service-oriented architecture (SOA) approach allows organizations to become both more efficient in meeting their cur-

rent needs and more agile in meeting future—and possibly unknown—challenges. SOA, however, is not a panacea. As with

any large-scale systems integration effort, there are challenges with employing SOA techniques effectively. This article presents

industry best practices to deal with key SOA challenges.

Larry Pizette, Salim Semy, Geoffrey Raines, and Steve Foote
The MITRE Corporation

© 2009 The MITRE Corporation. All rights reserved.

“As the government
evolves their

architectures to a
service orientation
on a large scale,

leadership will look for
the lessons learned

by industry and other
government

organizations.”

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 29

Software Engineering Technology

30 CrossTalk The Journal of Defense Software Engineering July/August 2009

between internal schemas and a common
vocabulary across the community, and
paying special attention to the governance
for maintaining data quality.

A proper focus on data will enable
interoperability among consumers and
providers and lower implementation risks
for the enterprise SOA.

4. Start small, learn, and evolve
Employing the big-bang approach to SOA
adoption is unlikely to be successful due
to the inherent risks of very large-scale
software development, requirements com-
plexity, and the challenges of establishing
a new architecture across large organiza-
tions with significant legacy infrastructure
and diverse computing needs.

These factors, coupled with the risk of
a large deployment, point us towards
starting small, learning, and evolving.
SOA initiatives should begin by address-
ing a business problem constrained in
scope, focusing on piloting the architec-
ture, ensuring that clearly defined success
criteria exist, and capturing the lessons
learned to educate the enterprise and
improve future SOA implementations.
Ron Schmelzer indicates that organiza-
tions should start with a small business
problem, adding:

Service-oriented architects must ...
maintain a pragmatic mental pic-
ture for how the organization can
evolve iteratively while still main-
taining a single, cohesive vision of
the organization’s architecture. [4]

Narrowing the initial scope of an SOA
implementation to one or two business
processes will help keep the SOA at a
manageable and realistic size.

Employing a start small, learn, and evolve
strategy will minimize risk and reduce the
time it takes an organization to realize
value from its SOA investment.

5. When establishing an SOA, have a
long-term vision
The long-term vision for an SOA imple-
mentation is frequently organizational
agility and reduced cost, allowing an orga-
nization to respond to changing needs
quickly and utilize IT resources more
effectively. These objectives can be real-
ized through service reuse, ease of inter-
operability, reduced integration and main-
tenance costs, and the ability to deploy
new capabilities quickly.

An initial SOA implementation that is
scalable and capable of expanding in
scope and requirements will ensure its
growth to meet future and unanticipated

needs. Heffner recommends to:

... craft your SOA strategy so that
investments are made: 1) in line
with work done and business value
delivered today on each business
technology solution delivery pro-
ject, and 2) as investments across a
portfolio of projects, maintaining a
significant trajectory ... toward your
long-term goals. [1]

SOA implementations should be de-
signed with the expectation that require-
ments will evolve and should be built to
allow for scalability and new capabilities.

6. Governance is a key component
of the SOA
SOA technologies can be applied to indi-
vidual projects, but the changes necessary
for an enterprise-wide adoption can only
be achieved by putting the right policies
and processes in place to bridge the enter-
prise architecture with the business strate-
gy.

Governance is an essential element of
an SOA; it is the vehicle for creating, com-
municating, and enforcing SOA policies,
roles, and responsibilities across the enter-
prise. The Organization for the Advance-
ment of Structured Information Stan-
dards (OASIS) states that:

SOA governance should be consid-
ered an extension of existing IT
governance that deals with the
decision rights, processes, and poli-
cies that are put into place to
encourage the adoption and opera-
tion of a SOA that may cross own-
ership boundaries. [5]

Example process areas that should be
governed include service life cycle, service
versioning, service monitoring, service
registries, and service testing [6].

Governance is necessary for establish-
ing trust so that consumers and producers
have a set of established expectations for
IT services essential to meeting their busi-
ness needs.

7. Integrate security throughout the
SOA life cycle
A primary objective of applying service
orientation to a system’s architecture is to
facilitate broader user access to informa-
tion stored within that system. A challenge
is enabling information sharing while pro-
tecting and securing the information being
shared [7].

This security challenge can be success-

fully conquered by dividing it into three
major areas and systematically tackling
each one: empowering unanticipated users
(if an SOA will be used to implement an
information-sharing strategy, which
requires access privileges for unanticipat-
ed users), establishing trust across organi-
zational boundaries, and mitigating newly
exposed vulnerabilities. Federal leaders
and security architects may need to estab-
lish enterprise-wide authentication and
authorization mechanisms in order to sup-
port access by unanticipated users.
Attribute-based access control and other
modern security techniques can be lever-
aged to provide this capability.

The successful implementation of an
SOA requires that the right security mech-
anisms are applied to the right services.
Also, security should be balanced with
other considerations, such as performance
and scalability.

8. Set realistic ROI expectations
during SOA implementation
One motivation for moving to an SOA is
the promise of cost reduction in opera-
tions, reuse, and future systems integra-
tion.

While cost savings can be a realistic
expectation, an organization should
expect upfront costs when implementing
SOA techniques for the first time. Causes
of upfront costs can be the learning curve
associated with modifying legacy applica-
tions to create service offerings, the lack
of technical staff familiarity with the tech-
nologies, and the need for new infrastruc-
ture. Infrastructure costs may include mid-
dleware (e.g., an enterprise service bus),
security components, quality of service mon-
itoring software, and hardware and net-
work upgrades. James Kobielus articulates
the investment consideration well:

The upside of SOA is that the mar-
ginal cost of building new applica-
tions will continue to drop as the
service-reuse rate climbs. The
catch is that there’s a significant
ramp-up cost, because adopting an
SOA means you’re going to need to
rethink many of your traditional
approaches to application model-
ing, development, integration,
deployment and management. [8]

Cost savings may occur at the enter-
prise-level eventually, but not necessarily
at the project level.

An organization adopting SOA
approaches needs to have a realistic expec-
tation on how much investment is needed
and the expected ROI.

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 30

July/August 2009 www.stsc.hill.af.mil 31

Conclusion
The ability to leverage IT resources across
the network—to adapt to evolving
requirements and to rapidly deliver new
functionalities to meet users’ needs—is at
the core of a networked enterprise.

SOA practices can help realize this
vision by establishing shared and compos-
able services. For example, DoD Chief
Information Officer John Grimes stated:

One of our challenges, which is
true for most large organizations—
both public and private—has been
the transition from an era where
local commands built local-area
networks and developed local
applications for customer require-
ments to where organizations have
to work together for interoperabil-
ity to get the right information to
the right person at the right time
around the globe. [9]

The SOA best practices described in
this article are intended to serve as a base-
line for successful SOA implementations.
They illustrate that an SOA is more than a
group of systems or purely a software
architecture; SOA changes the character
and agility of the underlying IT infrastruc-
ture that is available to an organization’s
senior leadership team and decision-mak-
ers. While technology is a key part of
employing SOA techniques, other IT man-
agement issues—such as changing the
organization’s culture toward providing
and consuming services and implementing
effective governance processes to contin-
ually align the IT portfolio with business
requirements—are equally important.�

References
1. Heffner, Randy, et al. “Pursuing SOA

In Hard Times: Adjusting Best Prac-
tices for SOA When Resources Are
Tight.” Forrester Research. 11 Nov.
2008 <www.forrester.com/Research/
Document/0,7211,47474,00.html>.

2. Leganza, Gene, et al. “Why Is SOA
Hot in Government?” Forrester Re-
search. 12 Dec. 2006 <www.forrester.
com/Research/Document/0,7211,40
673,00.html>.

3. Friedman, Ted, and Craig Muzilla.
eBiz. Webinars. “Where Data Meets
SOA: Data Services.” 28 June 2006
<www.ebizq.net/webinars/6953.
html>.

4. Schmelzer, Ronald. “Right-Sizing Ser-
vices.” ZapThink. 15 Nov. 2005
<www.zapthink.com/report.html?id=
ZAPFLASH-20051115>.

5. OASIS. “IT Governance and SOA
Governance.” 4 Apr. 2007 <http://
wiki.oasis-open.org/soa-rm/The
Architecture/Governance>.

6. Woolf, Bobby. developerWorks. IBM.
“Introduction to SOA Governance.”
July 2007 <www.ibm.com/developer
works/ibm/library/ar-servgov/>.

7. World Wide Web Consortium. “Web
Services Architecture.” 11 Feb. 2004
<www.w3.org/TR/2004/NOTE-ws

-arch-20040211/>.
8. Kobielus, James. “The ROI of SOA:

The more you reuse, the more you
save.” Network World. 10 Oct. 2005
<www.networkworld.com/techinsider
/2005/101005-roi-of-soa.html>.

9. Rosenberg, Barry. “Interview: John
Grimes.” Defense Systems. 17 Nov.
2008 <http://defensesystems.com
/Articles/2008/11/Interview-with
-John-Grimes.aspx?Page=1>.

About the Authors

Geoffrey Raines is a
principal software sys-
tems engineer for The
MITRE Corporation’s
Command and Control
Center, supporting a

variety of government sponsors.
Previously, he was the vice president and
chief technical officer of Electronic
Consulting Services, Inc.—an informa-
tion technology and engineering consult-
ing professional services firm, where he
developed engineering solutions for fed-
eral clients. He has a bachelor’s degree in
computer science from George Mason
University.

The MITRE Corporation
7525 Colshire DR
McLean, VA 22102-7539
E-mail: soa-list@lists.mitre.org

Steve Foote is a director
of engineering for The
MITRE Corporation’s
Command and Control
Center, supporting DoD
acquisition programs.

Most recently, he served as chief archi-
tect for the Air Force’s Electronic
Systems Center, where he facilitated the
adoption of net-centric technologies by
creating the Net-Centric Momentum
Series. Foote has a bachelor’s degree in
electrical engineering and a master’s
degree in advanced information systems,
both from Northeastern University, and
is currently working toward an advanced
degree in computer science.

The MITRE Corporation
202 Burlington RD
Bedford, MA 01730-1420
Phone: (781) 266-9521
E-mail: sfoote@mitre.org

Larry Pizette is a princi-
pal software systems
engineer for The MITRE
Corporation’s Command
and Control Center, sup-
porting a variety of gov-

ernment sponsors. Previously, he held
software engineering management posi-
tions of increasing responsibility at firms
developing enterprise-scale commercial
systems. Pizette has a bachelor’s degree
in computer science from the University
of Massachusetts and an MBA from
New York University.

The MITRE Corporation
202 Burlington RD
Bedford, MA 01730-1420
E-mail: lpizette@mitre.org

Salim Semy is a lead
software systems engi-
neer for The MITRE
Corporation’s Command
and Control Center.
Most recently, he focused

on developing a framework and identify-
ing design patterns to deliver service-ori-
ented solutions to constrained network-
ing and computing environments. Semy
has a bachelor’s degree in software engi-
neering from the University of Toronto
and a master’s degree in biomedical sci-
ences from Boston University’s School
of Medicine.

The MITRE Corporation
202 Burlington RD
Bedford, MA 01730-1420
E-mail: ssemy@mitre.org

A Perspective on Emerging Industry SOA Best Practices

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 31

32 CrossTalk The Journal of Defense Software Engineering July/August 2009

Open Forum

Imagine a small group within your orga-
nization coming to you and saying they

have the solution to your problem. You
don’t think that there’s a problem, so you
are both insulted and highly resistant to
the actions you are told to take. The group
may try an intervention activity to con-
vince you of the problem. To get rid of
them, you just go through the motions of
their suggestions and change—but return
to old habits as soon as the group stops
looking.

The process improvement equivalent
to this situation usually occurs when an
engineering process group (EPG)
approaches software and systems engi-
neering professionals with a set of defined
processes that solve their development,
maintenance, and management problems.
The professionals don’t believe they have
problems, so they resist the EPG’s efforts.
The EPG tries, in many ways, to coerce
the professionals into compliance. The
professionals may decide to go through
the motions in order to get rid of the
EPG, but return to their old ways once the
EPG stops looking.

Another situation is when your EPG
does not appear to face resistance.
Perhaps you didn’t recognize the resis-
tance in your organization because it was
disguised in feigned compliance.

Whatever situation you are in, the
resistance is natural, understandable, and,
surprisingly, desirable. We should not view
resistance as something to overcome, but
as an opportunity to improve the organi-
zation.

Developing Standard
Processes
Many organizations have great success
working process improvement in accor-
dance with the SEI’s CMMI. Central to
the CMMI is the principle that the organi-
zation should have a standard set of
defined processes that their engineering
and management professionals use to
build products and provide services. Using
these standard processes makes teams
more productive in a shorter time, and
improves the predictability of results.

Organizations expend a great deal of

effort and cost to develop a standard set
of processes. They form process action
teams to define the processes. The EPG
provides training on the processes and
conducts pilot projects to ensure their
usability. Managers and technicians change
their normal operating procedures to
adapt. They justify all of this expense by
citing the anticipated improvements in the
product and productivity.

However, some professionals resist
these improvements in favor of business as
usual. Organizations take precautions to
avoid these instances of resistance through
change management principles and
enforcement practices. Despite these pre-
cautions, there will be resistance to changes
in engineering and management processes.
The organization’s reaction to this resis-
tance indicates how successful it will be
with long-term process improvement.

Causes and Levels of
Resistance
Resistance to changes in engineering and
management processes is a natural reac-
tion because changes challenge a profes-
sional’s ego. Just suggesting a change
insinuates that their current practices are
wrong. Since professionals seldom feel
that their current practices are wrong, they
are unlikely to see a need for change. No
matter how positive the change or com-
pelling the argument, the threat to the pro-
fessional’s ego will cause resistance.

However, the level of resistance differs
among professionals:
• Those who are open to improvements

drop their resistance quickly and adopt
the change.

• Cautious professionals drop their
resistance and adopt the change when
they see that it is an improvement.

• One set of professionals will maintain
their resistance no matter how much
evidence is given that the change is
positive. These resisters make process
improvement the enjoyable challenge
that it is.

Addressing Resistance
Through Coercion
When an EPG encounters resistance, their

first reaction is to find some way to over-
come it. They address the resistance
through a series of intervention sessions.
They try to coerce the resisters by talking
about their assumed problems. They
quote CMMI, invoke the words of senior
management, and threaten to impact the
resisters’ performance review.

The EPG members often turn to coer-
cion, but these attempts are more likely to
toughen a resister’s stance. The resisters
stand firm in their beliefs and may even
flaunt their resistance. In order to satisfy
the EPG, resisters may go through the
motions of the process but are unlikely to
retain any change in behavior without
constant attention.

Linking Resistance to Problems
An EPG must suppress its own natural
reaction to beat back resistance. They must
consider the resisters’ perspective, who
likely feel under attack. Maybe they feel
like the resisters in Star Trek: The Next
Generation, who heard the Borg say:
“Resistance is futile ... you will be assimi-
lated.” The EPG should look for the root
cause of the resistance; usually when it is
found, the EPG stops appearing to attack
and starts resolving problems.

One likely cause of resistance could be
that the resisters actually do not suffer the
ills the defined process addresses. It makes
no sense to provide professionals a soft-
ware configuration management (SCM)
process when they are doing a good job of
SCM. The resisters are not in denial; they
truly do not have a problem.

Similarly, the resisters may be experi-
encing the problem the process resolves,
but it is not their biggest problem. This
may be best described as the Pareto
Principle (also known as the 80-20 rule) in
reverse. The EPG provides a solution to
the 80 percent of the work that causes 20
percent of the problems. For instance, the
EPG may provide a defined peer review
process that would help the resisters, but
does not provide as much help as a
requirements elicitation process.

It is also possible that the defined
process addresses the right problem but is
the wrong solution. For example, I once

Resistance as a Learning Opportunity

Many people treat resistance to change as something to overcome. They prepare for battle and arm senior executives with the tools

to “beat people into submission.” Perhaps what is really happening is that the people introducing the change are not open to it—

and are the real source of resistance. This article discusses why resistance exists, its benefits, and how to use it for improvement.

David P. Quinn
MOSAIC Technologies Group, Inc.

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 32

July/August 2009 www.stsc.hill.af.mil 33

was having SCM problems on a project
and needed help. Management mandated
the use of a particular tool to help resolve
everyone’s SCM problems. Unfortunately,
it was a UNIX tool on a network system
while my project was an RSX-11, stand-
alone system. My resistance to the man-
dated solution was strong and justified.
The solution caused as many problems for
me as it was supposed to solve.

Obviously, there will be times when
the resisters are simply in total denial of
engineering and management problems.
Instead of viewing this as something to
overcome, use these resisters for compar-
isons and possible solutions.

Learning From Resistance
The EPG can transform both the root
causes of resistance and total denial into
learning opportunities. When the resisters
do not have a problem and the solution is
not a solution for them, resisters provide
the EPG with another addition to the
organization’s set of standard processes.

When the process addresses the wrong
problem, the resistance helps the EPG to
prioritize which processes to define and
improve next. Resistance due to the wrong
solution allows the EPG to adjust its
defined process to address a new problem
area.

Resisters in denial can also provide a
learning opportunity. By using resisters as
reviewers, the EPG can learn that certain
steps in the process do not add value. The
EPG should approach these resisters with
questions such as: “How do you handle
this situation?” or “What would help you
in this situation?” The answers allow the
EPG to adjust and improve the defined
process, and possibly gain buy-in from the
resisters.

Resisters in denial provide the EPG
with a performance baseline for compari-
son when determining whether a defined
process is an improvement. If the defined
process is an improvement (and this is not
always a safe assumption), the resisters
should realize they do have a problem and
look to adopt the defined process.

Additionally, this baseline comparison
allows the organization to determine if
the improvement is significant enough to
warrant extended use. I’ll always remem-
ber the time I changed a sort program
that shaved three seconds from a five-
minute program. It was by definition an
improvement, but it did not warrant the
effort to develop or implement the
change1. A baseline comparison lets the
organization perform a quantitative cost-
benefit analysis for its decision-making
process.

Conclusion
When encountering resistance while
deploying a defined process, the EPG
should not complain or prepare for battle;
they should instead work to determine the
root cause of resistance. By addressing the
root cause, the EPG can learn about
another acceptable process, problems in
its defined process, or where future
improvement efforts need to be focused.
The resisters can be used to baseline the
defined process’ level of improvement.
There is even the potential that the
resisters will become users.

The EPG should rejoice when it
encounters resistance. It has discovered a
learning opportunity.�

Note
1. When you look at shaving three sec-

onds off a 300-second activity, there is
not sufficient change to consider it an
improvement. A 1 percent change usu-
ally does not fall within what an orga-
nization considers to be an improve-
ment as specified in the Organizational
Innovation and Deployment process
area. Organizations will usually set
their improvement thresholds around
10 percent before deeming a change to
be an improvement and deploying it.

About the Author

David P. Quinn is the
managing director for
process services at
MOSAIC Technologies
Group, Inc. He has more
than 25 years of software

and systems development, maintenance,
and management experience. Quinn also
has more than 15 years of experience as
a process improvement consultant. He is
a certified SCAMPISM lead appraiser for
CMMI for Development as well as a cer-
tified Introduction to the CMMI for
Development instructor. He was also a
member of the SW-CMM Advisory
Board for two years.

MOSAIC Technologies Group, Inc.
8161 Maple Lawn BLVD
STE 430
Fulton, MD 20759
Phone: (717) 451-2149
E-mail: dquinn@

mosaicsgroup.com

SM SCAMPI is a service mark of Carnegie Mellon University.

Get Your Free Subscription

Fill out and send us this form.

517 sMXs/MXDEa

6022 Fir ave

Bldg 1238

Hill aFB, UT 84056-5820

Fax: (801) 777-8069 DsN: 777-8069

Phone: (801) 775-5555 DsN: 775-5555

Or request online at www.stsc.hill.af.mil

NaME:__

raNk/GraDE:___

PosiTioN/TiTlE:__

orGaNizaTioN:___

aDDrEss:__

__

BasE/CiTy:__

sTaTE:___________________________ziP:___________________________________

PHoNE:(_____)___

FaX:(_____)___

E-Mail:__

CHECk BoX(Es) To rEqUEsT BaCk issUEs:

DEC2007 � soFTwarE sUsTaiNMENT

FEB2008 � sMall ProjECTs, BiG issUEs

Mar2008 � THE BEGiNNiNG

aPr2008 � ProjECT TraCkiNG

May2008 � lEaN PriNCiPlEs

sEPT2008 � aPPliCaTioN sECUriTy

oCT2008 � FaUlT-TolEraNT sysTEMs

Nov2008 � iNTEroPEraBiliTy

DEC2008 � DaTa aND DaTa MGMT.

jaN2009 � ENG. For ProDUCTioN

FEB2009 � sw aND sys iNTEGraTioN

Mar/aPr09 � rEiN. GooD PraCTiCEs

May/jUNE09 � raPiD & rEliaBlE DEv.

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

Resistance as a Learning Opportunity

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 33

34 CrossTalk The Journal of Defense Software Engineering July/August 2009

Departments

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 34

July/August 2009 www.stsc.hill.af.mil 35

BaCkTalk

It’s a brave new world and change seems to be the norm, the
motto, and the panacea to its tribulations. Apprehension is in

the air; trepidation around the corner. You can feel it lurking, sin-
ister, up to no good.

Is it the financial crisis? No worry there, just print more
money. The Influenza Pandemic? Sure, when pigs fly or birds
wallow. Climate change? Yes, it always has and always will. No,
this is something more subtle; an undercurrent gently sweeping
across the societal landscape.

We are slowly losing the art of communication. Don’t believe
it? Tweet your peeps or text your teenager. See what they say or
don’t say. The glorious evolution from pictographs to
Shakespeare is now declining to digital grunts and tawdry tweets.
Face time gives way to Facebook, expression is replaced by
emoticons, and the nimble thumb is now the voice of a new gen-
eration.

How did this happen? How did we ebb from Kipling to
Kardashian? How are millions captivated by Paula Abdul’s quest
to form a coherent sentence while Huxley’s new world remains
unexplored?

Do we really care what Lance Armstrong is eating for break-
fast and with whom? Do we need to know what Amy Winehouse
is rehabbing from this week? We already know what Karl Rove
thinks, so why belabor the point? Is Taylor Swift really behind
those tweets or is she tweet-synching? Maybe it’s a tweet double
or Twitter assistant?

Why would anyone want to broadcast their every move? Why
would anyone want to stalk someone’s every move? “Yea, Britney
went number two in the loo.” Oh yeah, money. She tweets and
you download a song. He blogs and you give to his cancer foun-
dation. Follow the hash-tag to find the money. But in the process,
we are losing the art of communication.

“But Gary, from an engineering standpoint, it’s more effi-
cient.” Is it? Efficiency is a double-edged sword. Sure, one aspect
of efficiency is performing with a minimum of wasted time,
effort, and resources. However, an equally important aspect of
efficiency is performing in the best possible manner. It cuts both
ways. If your communication is ineffective, it doesn’t matter if it
is quick, ubiquitous, or efficient.

Now the bad news: I regret to report that engineers have their
fingerprints all over the crime scene. Those in our own profes-
sion are the very raiders of the lost art of communication. You
don’t need a code from Da Vinci to realize that leaving the
redesign of social networks in the hands of communications
engineers is not the best of ideas. Would you consign to Robin
Williams timidity, John Madden flight, or Janeane Garofalo tea
parties? No, it’s not in their nature. So why hand over social rela-
tions to a communications engineer?

Come on, I love engineers. I was one once, but you don’t turn
over social networking to the prodigies who preferred calculating
instantaneous rates of change to cultivating colleagues and com-
panions. Most engineers are lucky if they find a Sancho Panza, let
alone pursue the impossible dream of wooing their Dulcinea.

Okay, maybe I’m being too harsh. Engineers are amiable
blokes and cordial lasses, but it is a tell-tale sign if you are invit-
ed to the party to wire the sound system rather than to be wired.
If the only buzz you get is electrical in nature, it should cause you
to pause and think.

I know someone has to roll up their sleeves to parse ambigu-
ous requirements, calculate complex algorithms, decipher convo-

luted code, and exploit volatile technologies. Not everyone can
garner fulfillment from extended screen exposure, elusive bugs,
fast Fourier transforms, and five lines of über-efficient code. We
need you, we value you, please stick around—but realize to com-
municate is human, not mechanical.

Here are a few suggestions that may help you digitally degauss
and socially recharge.
1. Turn off the computer. Leave your cell phone and iPod at

home. Invite family or friends on a walk. Talk about anything,
but talk the whole walk. If you are not talking, stop walking.
When you start talking you can walk.

2. Read a book. Not a technical manual, not a comic book ... and
you can’t use your Kindle. Preferably classic literature (but not
from iPhone’s “Classics” app). Don’t race to the end; instead,
savor the story.

3. Take in a live concert, musical, play, or comedy.
4. Learn the basics of human communication—transmission,

reception, as well as verification and validation—without the
use of technology.

5. Add someone to your design team who knows absolutely
nothing about technology or can recount the salient points of
“Les Misérables” in one minute.
The very technologies designed to bring us together are keep-

ing us apart. They promote isolation instead of collaboration.
It’s like the New Yorker who proudly pronounced to his country
cousin, “Everything I need—my office, my apartment, the gro-
cery store, the drug store, and theatre—are all within a city block.
I never have to leave.” His cousin scratched his head and
inquired, “And that’s a good thing?”

In designing our brave new world—where everything is a
click away—remember to ask yourself if that’s a good thing.

Let Britney go and spend some time with Billy, the Bard of
Avon. “O wonder! How many goodly creatures are there here!
How beauteous mankind is! O brave new world! That has such
people in’t!”1

…not sent via my BlackBerry, my iPhone,
Twitter, or carrier pigeon.

—Gary Petersen, Arrowpoint Solutions, Inc.

Note
1. Shakespeare, William. The Tempest. Act V, Scene I.

Raiders of the Lost Art

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk

article, go to <www.stsc.hill.af.mil>.

942134_Text:Aug2004.qxd 6/12/09 3:21 PM Page 35

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Sponsor
	Process Replication
	Lean Enablers for Systems Engineering
	A Framework for Systems Engineering Development of Complex Systems
	Why Software Requirements Traceability Remains a Challenge
	Software Project and Process Measurement

	Software Engineering Technology
	A Perspective on Emerging Industry SOA Best Practices

	Open Forum
	Resistance as a Learning Opportunity

	Coming Events
	SSTC 21st Conference Wrap-Up
	SMXG Ad
	BackTalk
	Back Cover

